

WELLS CREEK FINAL MONITORING REPORT YEAR 4 2008 EEP Project # 414 Alamance County, North Carolina

Submitted to:

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699

WELLS CREEK FINAL MONITORING REPORT YEAR 4 2008

EEP Project # 414 Alamance County, North Carolina

Original Design Firm: ARCADIS G&M of North Carolina, Inc. 801 Corporate Center Drive, Suite 300 Raleigh, NC 27607

Submitted to:

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699 Monitoring Firm:

1025 Wade Avenue Raleigh, NC 27605 Phone: (919)789-9977 Project Manager: Phillip Todd ptodd@sepiengineering.com

Executive Summary

The North Carolina Ecosystem Enhancement Program (EEP) restored two reaches along Wells Creek and an unnamed tributary in 2004. This project is located in Alamance County, NC. The three different reaches flow through pasture areas and wooded sections. Prior to restoration, cattle and horses had unlimited access to the stream channels which created areas of severe bank erosion and loss of vegetation. Since the restoration has been complete, the livestock have been fenced out of the stream with the exception of a few crossings that are used throughout the year to move the cattle from one field to another.

Goals of the Wells Creek stream project included: reducing the bank erosion; reducing nutrient runoff on the site; stabilizing stream channel banks by planting vegetation; and helping the stream reach its equilibrium through the proper design ratios for dimension, pattern, and profile.

This report documents the data collected for Monitoring Year 4. Current monitoring for the site consists of evaluating both stream morphology and riparian vegetation.

All reaches are considered to have remained stable between Monitoring Years 3 and 4. There were some aggradation areas occurring in riffle sections in Reaches 1 and UT. However, it should be clarified that these aggradation areas are not necessarily areas where an actual rise in thalweg elevation was measured, but rather areas where sediment deposition along the sides of the riffles (and in a few cases mid-channel) was observed. In most cases this deposition on the channel margins has formed inner-berm features as the stream is actually heading toward a narrower dimension at these locations. This trend may be correlated with the fact that all riffle pebble counts for both reaches show consistency with Monitoring Year 3 or even a coarsening of the sediment. The stream may be more efficiently transporting fine sediments out of the riffles as the riffles attain a more stable dimension with a narrower low-flow channel as the inner-berm forms. These areas will be observed closely in Monitoring Year 5 and if it appears that no additional deposition has occurred at the thalweg at that time, then they will not be reported as problems. There were three severe cases of bank erosion on Reach 2. One of these areas (Station 15+36 along the right bank) may warrant repair assessment first. The length of this bank erosion section is 60 feet. The majority of the problems found with in-stream structures were based on placement angle and/or position. These areas were listed only if it was found that the angle or placement location of the particular structure was a possible cause for an adjacent problem such as bank erosion (i.e. structure was placed so that it was not adequately protecting bank) or if the structure was forming a feature in the wrong place (e.g., if a structure was forming a pool along a straight riffle section). However, there was a crossvane located at Station 12+75 on Reach 1 that had water piping around the right arm. A j-hook located at Station 14+08 on Reach 2 had significant piping around the right side and minor piping around the left side. In addition, there was a rootwad at Station 18+16 on Reach UT that had some bank failure/undermining around the structure, and two others (Station 19+35 and Station 19+43) where similar bank failure/undermining has started.

The stem densities on Reaches 2 and the UT are well above the Monitoring Year 5 stem density goal (260 stems per acre), except for Vegetation Plot (VP) #4 on Reach UT that had a stem density of 91 stems per acre. Stem densities on Reach 1 were below the Monitoring Year 5 goal (260 stems/acre). Japanese stilt grass was documented in VP #3 and #4, which may have limited seedling survival in those plots. Otherwise, it is unknown why densities are so low in VP #1 through #4. The overall survival rate among all vegetation plots was just over 55% between Monitoring Years 1 and 4 and 76% between Monitoring Years 3 and 4.

The only vegetation-specific problem areas documented in Monitoring Year 4 were associated with invasive species. Invasive species documented at one ore more of the reaches include: *Rosa multiflora, Ligustrum sinense, Ailanthus altissima,* and *Microstegium virmineum* (see Plan Views in Appendix C).

TABLE OF CONTENTS

1.0	PROJE	CT BACKGROUND	1
	1.1	Project Objectives	
	1.2	Project Structure, Restoration Type, and Approach	1
	1.5	Project Location and Setting	
2.0		CT MONITORING METHODOLOGY	2 6
2.0	2 1	Vegetation Methodology	0 6
	2.1	Stream Methodology	б
		2.2.1 Longitudinal Profile and Plan View	6
		2.2.2 Permanent Cross Sections	6
		2.2.3 Pebble Counts	7
	2.3	Photo Documentation	7
3.0	PROJE	CT CONDITIONS AND MONITORING RESULTS	7
	3.1	Vegetation Assessment	7
		3.1.1 Soils Data	7
		3.1.2 Vegetative Problem Area Plan View	7
		3.1.3 Stem Counts	
	3.2	Stream Assessment	
		3.2.1 Longitudinal Profile and Plan View	9
		3.2.2 Permanent Cross-Sections	
		3.2.3 Pebble Counts	
	2.2	3.2.4 Stream Problem Areas	
4.0	3.3	Photo Documentation.	
4.0	RECON	MMENDATIONS AND CONCLUSIONS	
REFER	ENCES.		13
TARL	75		
Table I	Project I	Restoration Components	1
Table I	Project	Activity and Reporting History	2
Table I	I Project	t Contact Table	5
Table I	V Projec	t Background Table	
Prelimi	narv Soil	Data Table	
Table V	Verific	ation of Bankfull Events	9
Table V	I BEHI	and Sediment Export Estimates(not included in the	nis year's data)
Table V	/II Catego	orical Stream Feature Visual Stability Assessment	
Table V	/III Base	eline Morphology and Hydraulic Summary	Appendix B3
Table I	X. Morp	hology and Hydraulic Monitoring Summary	Appendix B3
Table A	1 Stem c	counts for each species arranged by plot	Appendix A1
Table A	2 Vegeta	ative Problem Areas	Appendix A1
Table B	1 Stream	n Problem Areas	Appendix B3
Table B	2 Visual	Morphological Stability Assessment	Appendix B3
FIGUR	RES		
Figure	1: Vicinit	ty Map	
Figure 2	2: Reache	es of Restoration Monitoring	
Monito	ring Plan	View	Appendix C
Vegetat	ion Curre	ent Conditions Plan View	Appendix C
Stream	Current (Conditions Plan View	Appendix C
APPEN	DICES		
Append	lix A		
Append	lix A1: V	egetation Data Tables	A1
Append	lix A2: Pl	hotolog – Vegetation Problem Areas	A2
W 11 ~	1	-	
Wells C	iect Num	bor 414	SEPI Engineering Group
February	7 2009		Monitoring Year 4 of 5

Appendix A3: Photolog – Vegetation Plots	A3
Appendix B	
Appendix B1: Photolog – Stream Problem Areas	B1
Appendix B2: Photolog – Cross Sections and Photo Points	B2
Appendix B3: Stream Data Tables	B3
Appendix B4: Stream Cross Sections	B4
Appendix B5: Stream Longitudinal Profile	B5
Appendix B6: Stream Pebble Counts	B6

Appendix C: Plan View Sheets

1.0 PROJECT BACKGROUND

1.1 <u>Project Objectives</u>

The goal of this stream restoration project is to improve the water quality in the Cape Fear River Basin. Wells Creek and its unnamed tributary (UT) at this project site are typical of streams within this and surrounding watersheds. Prior to restoration, the channels exhibited instability and degradation in response to the current and historical land use practices. Nutrient input should decrease with the establishment of a riparian buffer and fencing the cattle out of the streams. In time, the buffer will provide wildlife cover and shade to the stream which will encourage wildlife diversity, both aquatic and terrestrial.

1.2 Project Structure, Restoration Type, and Approach

Reach 1 (the northern-most section) is the longest section of Wells Creek covering approximately 1,246 linear feet. Reach 2 includes 1,140 linear feet and is located south of Reach 1. The Unnamed Tributary (UT) reach is approximately 1,014 linear feet and lies west of Reach 2. Figure 2 shows the relative location of the three reaches.

Priority Level I, II and III restoration were implemented to restore the streams to a more stable condition. Boulder structures were constructed and installed at strategic locations to provide stream bed and bank stability. Root wads were installed to provide bank protection and increase habitat diversity. Table I details the specific restoration components employed on each reach.

	Table I. Project Restoration Components Wells Creek/EEP Project Number 414											
Project Segment or Reach ID	Pre-Existing Footage Type		Approach	As-Built Footage	As-Built Stationing	Monitoring Year 4 Stationing	Comments					
Reach 1	*	R & E (I)**	PI, PII, and PIII**	1,193	10+00 - 21+93	10+00 - 20+68	Mix of approaches used according to Initial Monitoring Report					
Reach 2	*	R & E (I)**	PI, PII, and PIII**	1,127	10+00 – 21+27	10+00 - 20+40	Mix of approaches used according to Initial Monitoring Report					
Unnamed Tributary	*	R & E (I)**	PI, PII, and PIII**	1,083	10+00 - 20+83	10+00 - 20+21	Mix of approaches used according to Initial Monitoring Report					

*Restoration plan information unavailable to SEPI.

**Information found in Year 1 monitoring report (ARCADIS) and may be erroneous; SEPI does not have the original Restoration Plan.

P in the Approach column refers to Priority Level. R refers to 'Restoration'.

E (I) refers to Enhancement Level I.

1.3 <u>Project Location and Setting</u>

This project is near Snow Camp, North Carolina in south-central Alamance County. To reach the site from Raleigh, go west on US 64 to Siler City. From Siler City, go north on Martin Luther King Boulevard. The North Carolina Atlas and Gazetteer (DeLorme 1997) labels Martin Luther King

Wells Creek EEP Number 414 February 2009 1

Boulevard as Snow Camp Road. Continue north toward the community of Snow Camp (approximately 12 miles). Just before Snow Camp, take a left on SR 2360 (Sylvan School Road). Continue on Sylvan School Road for approximately 2 miles then take a right on Bass Mountain Road. Continue on Bass Mountain Road for approximately ½ mile and take a left on Beale Road. Continue on Beale Road for approximately 1 mile, then turn right on Longest Acre Road (Wright Road in the NC Gazetteer). Reach 1 is at the end of Longest Acre Road. All three reaches are located in the triangle created by Bass Mountain Road, Beale Road, and Thompson Road. Figure 1 shows the location of the three reaches. The site is located in a rural portion of Alamance County on a working livestock farm. The stream reaches flow through pasture and wooded areas. Prior to restoration, livestock had unlimited access to several portions of the channel. Since the completion of restoration, the stream has been fenced off from the livestock. The surrounding topography has gently sloping hills.

1.4 History and Background

Wells Creek and its tributary were in an active cattle pasture prior to restoration. The current land owner cleared the land for pasture in the 1970's. Prior to the 1970's the land was forested. According to the owner, there was a mill on site. An old rock dam is located upstream of Reach 2, and an old breached rock dam is at the downstream end of Reach 1. Prior to restoration the streams lacked sinuosity and they were likely altered for agriculture. Tables II-IV provide background information for the project.

Table II. Project Activity and Reporting History										
Wells Creek/EEP Project Number 414										
Activity or Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery							
Restoration Plan			August 1, 2002							
Final Design - 90%			unknown							
Construction			August 2003-April 2004							
Temporary S&E mix applies to entire project area			August 2003-April 2004							
Permanent seed mix applies to reach/segments 1&2			August 2003-April 2005							
Containerized and B&B plantings for reach/segments 1&2			August 2003-April 2006							
Mitigation Plan/ As-built (Year 0 Monitoring - baseline)		Dec-04	December 2004/July 2004							
Year 1 monitoring			Sep-05							
Year 2 monitoring		Apr-06	Nov-06							
Year 3 monitoring		Oct-07	Dec-07							
Year 4 monitoring	Apr-08	Nov-08	December 15, 2008							
Year 5 monitoring	Apr-09									
Year 5+ monitoring										

Wells Creek EEP Number 414 February 2009

Wells Creek EEP Number 414 February 2009

Table III. Project Contact Table							
Wells Creek/EEP Project Number 414							
Designer	ARCADIS G&M of North Carolina						
	801 Corporate Center Drive, Suite 300						
	Raleigh, NC 27607						
Construction Contractor	A&D Environmental and Industrial Services, Inc.						
	Gerald Walker						
	2718 Uwharrie Road Archdale, NC 27263						
	336-434-7750						
Planting Contractor	Seal Brothers Contracting Eddie Tobler						
	PO BOX 86 Dobson, NC 27017						
	336-786-8863						
Seeding Contractor	A&D Environmental and Industrial Services, Inc.						
	Gerald Walker						
	2718 Uwharrie Road Archdale, NC 27263 336-						
	434-7750						
2005 Monitoring Performers	ARCADIS G&M of North Carolina						
	801 Corporate Center Drive, Suite 300						
	Raleigh, NC 27607						
2006 - 2008 Monitoring	SEPI Engineering Group						
Performers	1025 Wade Avenue						
	Raleigh, NC 27605						
	Phillip Todd (919) 789-9977						
Stream Monitoring POC	Ira Poplar-Jeffers (919) 573-9914						
Vegetation Monitoring POC	Phil Beach (919) 573-9936						
Wetland Monitoring POC	N/A						

Table IV. Project Background Table							
Wells Creek/EEP Project Number 414							
Project County	Alamance						
	Reach 1: 1.63 sq mi						
	Reach 2: 2.23 sq mi and						
Drainage Area	UT: 0.71 sq. mi						
Drainage impervious cover estimate (%) For example	Wells Creek Reach 1 & 2 ~3%; Unnamed Tributary <1%						
Stream Order	Wells Creek Reach 1: 2nd Order						
	Wells Creek Reach 2: 3rd Order						
	Unnamed Tributary: 1st Order						
Physiographic Region	Piedmont						
Ecoregion	Southern Outer Piedmont Carolina Slate Belt						
Rosgen Classification of As-built	C 4/1						
Cowardin Classification	Disturbed Cattle Pasture						
	Colfax, Lignum, Georgeville, Tarrus, Herndon, Local Alluvial						
Dominant soil types	Land, and Vance						
	UT to Wells Creek, Cane Creek Mountains, Alamance County						
Reference site ID	and UT to Varnals Creek						
USGS HUC for Project and Reference	03030002 Haw River						
NCDWQ Sub-basin for Project and Reference	03-06-04						
NCDWQ classification for Project and Reference	Project and reference are Class C, NSW						
Any portion of any project segment 303d listed?	No						
Any portion of any project segment upstream of a 303d							
listed segment?	No						
Reasons for 303d listing or stressor	N/A						
% of project easement fenced	100%						
% of project easement demarcated with bollards (if fencing absent)	NA						

2.0 **PROJECT MONITORING METHODOLOGY**

2.1 <u>Vegetation Methodology</u>

For this monitoring project, a total of nine (9) plots were studied. Plot sizes measure 10 meters by 10 meters (or equivalent to 100 square meters) depending on buffer width. The vegetation monitoring was not the Carolina Vegetation Survey (CVS) protocol, but was based on the number of stems for the targeted species that were planted for the stream restoration project. The planted material in the plot (previously marked with flagging) was identified by species and a tally of each species was kept and recorded in a field book. Any stems for a given species in a given plot that were not flagged and were counted over and above the baseline total were considered volunteers.

2.2 <u>Stream Methodology</u>

The project monitoring for the stream channel included a longitudinal survey, cross-sectional surveys, pebble counts and photo documentation. These measurements were taken at each reach. The stationing was based on thalweg. The methodology for each portion of the stream monitoring is described in detail below.

2.2.1 Longitudinal Profile and Plan View

A longitudinal profile was surveyed for each reach with a Nikon DTM-520 Total Station, prism, and a TDS Recon Pocket PC. The heads of features (i.e. riffles, runs, pools, and glides) were surveyed, as well as the point of maximum depth of each pool, boundaries of problem areas, and any other significant slope-breaks or points of interest. At the head of each feature and at the maximum pool depth, thalweg, water surface, edge of water, left and right bankfull, and left and right top of bank were surveyed. All profile measurements were extracted from this survey, including channel and valley length and length of each feature, water surface slope for each reach and feature, bankfull slope for the reach, and pool-to-pool spacing. This survey also was used to draw plan view figures with Microstation v8 (Bentley Systems, Inc., Exton, PA) for each reach, and all pattern measurements (i.e. meander length, radius of curvature, belt width, meander width ratio, and sinuosity) were extracted from the plan view. Stationing was calculated along the thalweg.

2.2.2 Permanent Cross Sections

Four permanent cross sections (two riffles and two pools) were surveyed at each reach. The beginning and end of each permanent cross section were originally marked with a wooden stake. Cross sections were established perpendicular to the stream flow with station 0+00 feet located on the left bank. The survey noted all changes in slopes, tops of both banks, left and right bankfull, edges of water, thalweg and water surface. Before each cross section was surveyed, bankfull level was identified, and a quick bankfull area was calculated by measuring a bankfull depth at 1-foot intervals between bankfulls and adding the area of each block across the channel. This rough area was then compared to the North Carolina Rural Piedmont Regional Curve-calculated bankfull area to ensure that bankfull was accurately located prior to the survey. The cross sections were plotted, and Monitoring Year data was overlain on all previous monitoring years for comparison. All dimension measurements (i.e., bankfull width, floodprone width, bankfull mean depth, cross sectional area, width-to-depth ratio, entrenchment ratio, bank height ratio, wetted perimeter, and hydraulic radius) were extracted from these plots and compared to Monitoring Year 1 and Monitoring Year 2 data.

2.2.3 Pebble Counts

A modified Wolman pebble count (Rosgen 1994), consisting of 50 samples, was taken at each permanent cross section. The cumulative percentages were plotted, and the D50 and D84 particle sizes were calculated and compared to Monitoring Year 1 (where available) and 2 data.

2.3 <u>Photo Documentation</u>

Permanent photo points were established during Year 1 monitoring. A set of three photographs (facing upstream, facing downstream, and facing the channel) were taken at each photo point with a digital camera. Two photographs were taken at each cross-section (facing upstream and downstream). A representative photograph of each vegetation plot was taken at the designated corner of the vegetation plot and in the same direction as the Year 2 photograph. An arrow was placed on the designated corner of each vegetation plot on the plan view sheets to document the corner and direction of each photograph. Photos were also taken of all significant stream and vegetation problem areas.

3.0 PROJECT CONDITION AND MONITORING RESULTS

3.1 <u>Vegetation Assessment</u>

3.1.1 Soils Data

Preliminary Soil Data										
Series	Max Depth (in.)	% Clay on Surface	K	Т	OM %					
Colfax (Ce)	67	5.0 - 20.0	0.45	*	1.0 - 3.0					
Colfax (Cf)	67	7.0 - 25.0	7.0 - 25.0 0.36 *							
Efland (EaC)	86	<<<<< Information unavailable >>>>>>								
Efland (EaC2)	86	<<<<< Information unavailable >>>>>>								
Efland (EbC3)	86	<<<<	<<<< Information	unavailable >>	>>>>>					
Georgeville (GaC2)	63	5.0 - 20.0	0.48	*	0.5 - 2.0					
Georgeville (GaD2)	63	5.0 - 20.0	0.48	*	0.5 - 2.0					
Local alluvial (Ld)		<<<·	<<<< High variab	ility of data >>	>>>>>					
Starr (Sb)	70	10.0 - 25.0	0.34	*	0.5 - 2.0					
Vance (VcC2)	72	8.0 - 20.0	0.55	*	0.5 - 2.0					

* The soils information was not available from the Natural Resources Conservation Service (NRCS)

3.1.2 Vegetative Problem Area Plan View

Overall, there is strong vegetation along the stream channel. All three monitoring reaches have thick herbaceous vegetative cover. The only problems associated with vegetation were with invasive species. Multiflora rose (*Rosa multiflora*) was documented at several locations along Reaches 1 and 2. Although not considered to be a problem, it should be noted that cattail, sometimes considered invasive, were documented at one location on Reach 1 (Station 18+93 - 18+69). Japanese stilt grass (*Microstegium virmineum*) was found at all three reaches. Reach 1 has only one documented area of Japanese stilt grass, located at Station 20+22 on the left bank, and Reaches 2 and UT have multiple locations (see Table VI in Appendix A3). Reach 2 had two large areas of Chinese privet (*Ligustrum sinense*). The first area of privet is located on the left side of the project (facing downstream) from Station 15+76 to 16+65 and the

second is located along the right side of the project (facing downstream) from Station 17+68 to 18+78. Tree of heaven (*Ailanthus altissima*) also was documented at two locations on Reach 2. The first location of tree of heaven is along the left side of the project (facing downstream) from Station to 17+75 to 18+03 and the second is along the right side (facing downstream) from 17+83 to 18+47 (see Plan Views in Appendix C).

3.1.3 Stem Counts

The stem densities on Reaches 2 and the UT are well above the Monitoring Year 5 stem density goal (260 stems per acre), except for Vegetation Plot (VP) #4 on Reach UT that had a stem density of 91 stems per acre. Stem densities on Reach 1 were below the Monitoring Year 5 goal (260 stems/acre). Japanese stilt grass was documented in VP #3 and #4, which may have limited seedling survival in those plots. Otherwise, it is unknown why densities are so low in VP #1 through #4.

The overall survival rate among all vegetation plots (VP) was just over 55% between Monitoring Years 1 and 4 and 76% between Monitoring Years 3 and 4. Vegetation plot photos are located in Appendix A2, and vegetation data tables are located in Appendix A3.

It should be noted that there were several species for which one-to-many additional stems were counted in a given plot relative to the Monitoring Year 3 stem count. These additional stems were assumed to be volunteers and were not included in the survival calculations. Volunteer species documented in Monitoring Year 4 included: *Alnus serrulata, Acer rubrum, Cercis canadensis, Fraxinus americana, Liriodendron tulipifera, Baccharis halimifolia, Prunus serotina, Diospyros virginiana, Liquidambar styraciflua, Ailanthus altissima, and Ligustrum sinense.* Vegetation plots #1 through #4 would probably be above the Monitoring Year 5 stem density goal if these volunteers were included in the stem count.

3.2 <u>Stream Assessment</u>

Considering the 5 year timeframe of standard mitigation monitoring, restored streams should demonstrate morphologic stability in order to be considered successful. Stability does not equate to an absence of change, but rather to sustainable rates of change or stable patterns of variation. Restored streams often demonstrate some level of initial adjustment in the several months that follow construction and some change/variation subsequent to that is to also be expected. However, the observed change should not indicate a high rate or be unidirectional over time such that a robust trend is evident. If some trend is evident, it should be very modest or indicate migration to another stable form. Examples of the latter include depositional processes resulting in the development of constructive features on the banks and floodplain, such as an inner berm, slight channel narrowing, modest natural levees, and general floodplain deposition. Annual variation is to be expected, but over time this should demonstrate maintenance around some acceptable central tendency while also demonstrating consistency or a reduction in the amplitude of variation. Lastly, all of this must be evaluated in the context of hydrologic events to which the system is exposed over the monitoring period.

For channel dimension, cross-sectional overlays and key parameters such as cross-sectional area and the channel's width to depth ratio should demonstrate modest overall change and patterns of variation that are in keeping with above. For the channels' profile, the reach under assessment should not demonstrate any consistent trends in thalweg aggradation or degradation over any significant continuous portion of its length. Over the monitoring period, the profile should also demonstrate the maintenance or development of bedform (facets) more in keeping with reference level diversity and distributions for the stream type in question. It should also provide a meaningful contrast in terms of bedform diversity against the pre-existing condition. Bedform distributions, riffle/pool lengths and slopes will vary, but should do so with

maintenance around design/As-built distributions. This requires that the majority of pools are maintained at greater depths with lower water surface slopes and riffles are shallow with greater water surface slopes. Substrate measurements should indicate the progression towards, or the maintenance of, the known distributions from the design phase.

In addition to these geomorphic criteria, a minimum of two bankfull events must be documented during separate monitoring years within the five year monitoring period for the monitoring to be considered complete. Table VIII documents all bankfull events recorded since the start of Monitoring Year 1.

	Table V. Verification of Bankfull Events											
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)									
7/19/2006	Unknown	Bankfull event recorded: evident by crest stage gauge (0.6" wet on the measuring stick).	no photo									
1/19/2007	Unknown	Bankfull event recorded: evident by crest stage gauge (7.0" wet on the measuring stick).	no photo									
4/5/2007	Unknown	Crest gauge reading of 4.75 inches over bankfull (located at 0.00 inches on gauge).	no photo									
6/4/2007	6/3/2007	Bankfull event observed as a result of ~1.5 inch rainfall event. Noted wrack lines.	no photo									
2/1/2008	Unknown	Crest gauge reading of 5.0 inches over bankfull (located at 0.00 inches on gauge). Noted wrack lines.	no photo									
9/1/2008	8/27/2008 - 8/28/2008	According to NCDC Station Coop ID 313555 - Graham ENE, NC, 6.58 inches of precipitation fell on this day. It was assumed, but not verified, that this rainfall produced a bankfull event.	no photo									
9/8/2008	Unknown	Several bankfull events resulting from 9/1/2008 storm event. Note wrack lines located above the top of bank elevation in photo.	Photo 6 in SR-1 SPA Photolog									

3.2.1 Longitudinal Profile and Plan View

All other profile parameters remained consistent through Monitoring Year 4, with the exception of an apparent increase in median meander wavelength of Reach 1. This observation is best explained by the fact that fewer meanders were included in this years' survey (i.e., survey stopped at cross section #4 this year per EEP request to stop the survey as close to 1,000 feet as possible). This left a fairly long meander out of the meander wavelength calculation. In addition, the plan view overlay was very tight between monitoring years, so it is clear that this does not represent actual change in the stream pattern.

The overall water surface slopes of the three reaches appear stable between Monitoring Years 1 through 4, and all other profile parameters appear consistent with previous monitoring years, with two exceptions. Median riffle slope seems to have decreased to some degree on Reach 1 and increased on Reach UT (see Table XIII in Appendix B3). However, based on the consistency of the profile overlays, it is most likely that human error in survey and/or erroneous water surface elevations account for the observed differences in riffle slope. Aggradation in the riffles may play a small part in these changes since it is a documented problem on these two reaches, however this is unlikely b/c the documented aggradation areas were not areas where there was a measurable change in thalweg elevations between monitoring years, but rather areas where it appeared that the stream was heading toward a narrower dimension.

3.2.2 Permanent Cross Sections

All cross sections appear to have remained stable through Monitoring Year 4. There is some apparent deposition on the right side of cross section #9 on Reach 2. The deposition is located on the inside of the meander and represents normal point bar development. There was some downcutting in the channel along the right side (inside of the meander bend) of cross section 12 on Reach 2 which should be watched next year. However, considering this is a pool cross section and the pool does not appear to be overly deep, this is not a major concern at this time.

There were issues of monument loss in Monitoring Years 2 and 3 at cross sections 1 and 4 (monuments on right side of cross sections) of Reach UT, as can be observed on the cross section overlay figures (Appendix B4). It should be noted that these monuments were relocated during Monitoring Year 4, and the cross section surveys now match the Monitoring Year 1 survey much more closely in Monitoring Year 4.

3.2.3 Pebble Counts

Based on the pebble data overlays, it appears that the upper end of Reach 1 has experienced a coarsening of the streambed substrate. The pebble distribution plots for cross sections #1 and #2 show a decrease between Monitoring Years 3 and 4 in the percentages of silt and pebble distributions have remained consistent on cross sections #3 and #4 (Appendix B6). This result may be correlated with the increase in storm flow frequency in Monitoring Year 4. Silt that was deposited at these cross sections in Monitoring Year 3 was probably flushed downstream during high flow events. In addition, as the riffles get closer to their stable dimension, they are probably becoming more efficient at transporting sediments. This could be correlated to the substrate coarsening trend observed.

Reach UT pebble count overlays show that the substrate make-up in reach UT remained consistent with Monitoring Year 3. Cross section #8 (pool) did show an increase in silt percentages, however this is not abnormal for a pool.

Reach 2 pebble counts show consistency with Monitoring Year 3, or even a substrate coarsening trend in cross sections #10, #11, and #12. This result may be correlated with the result that no aggradation areas (i.e. riffle deposition/narrowing areas) recorded in Monitoring Year 3 were documented in Monitoring Year 4 on Reach 2. The reach is probably reaching a stable equilibrium with regards to sediment transport as the riffles narrow to a stable dimension. The coarsening trend observed on cross sections #10, #11, and #12 may also with the increase in storm flow frequency in Monitoring Year 4.

3.2.4 Stream Problem Areas

Aggradation in riffle sections remains prominent in Reaches 1 and UT. However, it should be clarified that these aggradation areas are not necessarily areas where an actual rise in thalweg elevation was measured, but rather areas where sediment deposition along the channel margins of the riffles (and in a few cases mid-channel) was observed. In most cases this deposition on the channel margins has formed inner-berm features as the stream is actually heading toward a narrower dimension at these locations. This trend may be correlated with the fact that all riffle pebble counts for both reaches show consistency with Monitoring Year 3 or even a coarsening of the sediment. The stream may be more efficiently transporting fine sediments out of the riffles as the riffles attain a more stable dimension with a narrower low-flow channel as the inner-berm forms. These areas will be observed closely in Monitoring Year 5 and if it appears that no additional deposition has occurred at the thalweg at that time, then they will not be reported as problems. Reach 2 had no aggradation areas documented in Monitoring Year 4 since all areas previously documented were observed to be at stable dimension (i.e. side deposition has stabilized

with grass and other rooted vegetation taking hold) and appear to be efficiently transporting fine sediment through the riffle.

Although there were two areas of bank erosion on Reach 1 and two cases on Reach 2, none were rated severe. There were three severe cases of bank erosion on Reach 2. One of these areas (Station 15+36 along the right bank) may warrant repair assessment; the length of this section is 60 feet (See Table X in Appendix B3).

The majority of the problems found with in-stream structures were based on placement angle and/or position. These areas were listed only if it was found that the angle or placement location of the particular structure was a possible cause for an adjacent problem such as bank erosion (i.e. structure was placed so that it was not adequately protecting bank) or if the structure was forming a feature in the wrong place (e.g., if a structure was forming a pool along a straight riffle section). However, there was a crossvane located at Station 12+75 on Reach 1 that had water piping around the right arm. There was a j-hook located at Station 14+08 on Reach 2 that had significant piping around the right side and minor piping around the left side. In addition, there was a rootwad at Station 18+16 on Reach UT that had some bank failure/undermining around the structure, and two others (Station 19+35 and Station 19+43) where similar bank failure/undermining has started.

Table VII a. Categorical Stream Feature Visual Stability Assessment											
Wells Creek											
Segment/Reach: 1											
FeatureInitialMY-01MY-02MY-03MY-04MY-05											
A. Riffles			95%	79%	72%						
B. Pools			95%	92%	93%						
C. Thalweg			92%	93%	92%						
D. Meanders	T T 1		74%	76%	93%						
E. Bed General	UIKIIOWII	UIKIIOWII	96%	92%	92%						
F. Bank Condition			95%	98%	98%						
G. Vanes / J Hooks etc.			94%	99%	98%						
H. Wads and Boulders			88%	97%	97%						

Table VII b. Categorical Stream Feature Visual Stability Assessment											
Wells Creek											
Segment/Reach: 2											
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05					
A. Riffles			80%	84%	88%						
B. Pools			85%	95%	100%						
C. Thalweg			83%	93%	100%						
D. Meanders	University		53%	77%	72%						
E. Bed General	UIIKIIOWII	Uliknown	90%	92%	99%						
F. Bank Condition			70%	79%	87%						
G. Vanes / J Hooks etc.			86%	89%	85%						
H. Wads and Boulders			71%	86%	83%						

Table VII c. Categorical Stream Feature Visual Stability Assessment											
Wells Creek											
Segment/Reach: UT											
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05					
A. Riffles			83%	96%	80%						
B. Pools			88%	96%	100%						
C. Thalweg			87%	93%	100%						
D. Meanders	Unknown	Unknown	81%	76%	81%						
E. Bed General	UIIKIIOWII	UIKIIOWII	84%	85%	92%						
F. Bank Condition			83%	94%	99%						
G. Vanes / J Hooks etc.			85%	94%	96%						
H. Wads and Boulders			69%	88%	81%						

3.3 Photo Documentation

Photos taken of the vegetation problem areas and photos of the vegetation plots are in Appendix A. Stream problem area photographs are provided in Appendix B1. The photographs taken at the marked photo point locations and at the cross-sections are provided in Appendix B2.

4.0 RECOMMENDATIONS AND CONCLUSIONS

All reaches are considered to have remained geomorphically stable between Monitoring Years 3 and 4, with the exception of some areas of aggradation occurring in riffle sections in Reaches 1 and UT. However, it should be clarified that these aggradation areas are not necessarily areas where an actual rise in thalweg elevation was measured, but rather areas where sediment deposition along the channel margins of the riffles (and in a few cases mid-channel) was observed. In most cases this deposition on the channel margins has formed inner-berm features as the stream is actually heading toward a narrower dimension at these locations. This trend may be correlated with the fact that all riffle pebble counts for both reaches show consistency with Monitoring Year 3 or even a coarsening of the sediment. The stream may be more efficiently transporting fine sediments out of the riffles as the riffles attain a more stable dimension with a narrower low-flow channel as the inner-berm forms. These areas will be observed closely in Monitoring Year 5 and if it appears that no additional deposition has occurred at the thalweg at that time, then they will not be reported as problems. Reach 2 had no aggradation areas documented in Monitoring Year 4 since all areas previously documented were observed to be at stable dimension (i.e. side deposition has stabilized with grass and other rooted vegetation taking hold) and appear to be efficiently transporting fine sediment at the new riffle dimension. Although there were two areas of bank erosion on Reach 1 and two cases on Reach 2, none were rated severe. There were three severe cases of bank erosion on Reach 2. One of these areas (Station 15+36 along the right bank) may warrant repair assessment; the length of this section is 60 feet (See Table X in Appendix B3). The majority of the problems found with in-stream structures were based on placement angle and/or position. However, there was a crossvane located at Station 12+75 on Reach 1 that had water piping around the right arm. A j-hook located at Station 14+08 on Reach 2 had significant piping around the right side and minor piping around the left side. In addition, there was a rootwad at Station 18+16 on Reach UT that had some bank failure/undermining around the structure, and two others (Station 19+35 and Station 19+43) where similar bank failure/undermining has started.

The stem densities on Reaches 2 and the UT are well above the Monitoring Year 5 stem density goal (260 stems per acre), except for Vegetation Plot (VP) #4 on Reach UT that had a stem density of 91 stems per acre. Stem densities on Reach 1 were below the Monitoring Year 5 goal (260 stems/acre). Japanese stilt

Wells Creek EEP Number 414 February 2009 grass was documented in VP #3 and #4, which may have limited seedling survival in those plots. Otherwise, it is unknown why densities are so low in VP #1 through #4. The overall survival rate among all vegetation plots (VP) was just over 55% between Monitoring Years 1 and 4 and 76% between Monitoring Years 3 and 4.

REFERENCES

- ARCADIS G&M of North Carolina, Inc (ARCADIS). September 2004. *Mitigation Plan, Wells Creek at Syndor Property*.
- ARCADIS G&M of North Carolina, Inc (ARCADIS). December 2005. Year One Monitoring Report, Wells Creek at Syndor Property.

DeLorme. 1997. The North Carolina Atlas and Gazateer.

- Harman, W.H., et al. 1999. Bankfull Hydraulic Geometry Relationships for North Carolina Streams. AWRA Wildland Hydrology Symposium Proceedings. Edited by D.S. Olson and J.P. Potyondy. AWRA Summer Synposium. Bozeman, MT.
- North Carolina Ecosystem Enhancement Program. November 2006. Content, Format and Data Requirements for EEP Monitoring Reports, Version 1.2.
- Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 166-169.

SEPI Engineering Group. 2006. Wells Creek Final Monitoring Report, Year 2 of 5.

SEPI Engineering Group. 2007. Wells Creek Final Monitoring Report, Year 3 of 5.

- U.S. Department of Agriculture, Soil Conversation Service. April 1960. Soil Survey Alamance County, North Carolina.
- U.S. Department of Army, Corps of Engineers. 2003. *Stream Mitigation Guidelines*. <u>http://www.saw.usace.army.mil/wetlands/Mitigation/stream_mitigation.html</u>

APPENDIX A1

VEGETATION DATA TABLES

			Tabl	e VII. S	tem coun	its for ea	ich spec	ies arra	naed bv	plot (Wells C	Creek)				
Species					Plots				<u> </u>	Year 1	Year 2	Year 3	Year 4	Survival	Additional
	1	2	3	4	5	6	7	8	9	Totals	Totals	Totals	Totals	%	volunteers noted in plots
Shrubs															
Cornus ammomum			2	1	(7 LS)				(1 LS)	11 (12 LS)	4 (13 LS)	3 (11 LS)	3 (8 LS)	47.8%	Х
Trees												, , ,			
Betula nigra					2			2	1	10	9	9	5	50.0%	х
Carpinus caroliniana					3	3		2		11	10	8	8	72.7%	х
Diospyros virginiana										0	2	0	0	0.0%	Х
Fraxinus pennsylvanica							2		3	2	6	3	5	83.3%	
Juglans nigra			1		1	2				12	13	10	4	33.3%	Х
Nyssa sylvatica										1	0	0	0	0.0%	Х
Platanus occidentalis	1	1		1		3	1	3		22	16	16	10	45.5%	х
Salix nigra							16			13	17	17	16	94.1%	
Sambucus canandensis										1	0	0	0	0.0%	
Quercus michauxii						1	3		1	16	9	6	5	31.3%	х
Quercus rubra										2	2	0	0	0.0%	
Quercus alba		1			1					5	4	4	2	40.0%	х
Quercus marilandica										1	1	0	0	0.0%	
Total including live stake	1	2	3	2	14	9	22	7	6	119	102	87	66	55.5%	
Stems per acre	48	95	143	91	700	410	1047	350	286						
Total exluding live stake	1	2	3	2	7	9	22	7	5	107	89	76	58	54.2%	
Stems per acre	48	95	143	91	350	410	1047	350	238						

Note: Survival was calculated between Monitoring Year 1 and Monitoring Year 4 totals.

*Volunteers of the following species, not initially recorded as planted, were counted: Alnus serrulata, Acer rubrum, Cercis canadensis, Fraxinus americana, Liriodendron tulipifera,

Baccharis halimifolia, Prunus serotina, Diospyros virginiana, Liquidambar styraciflua, Ailanthus altissima, and Ligustrum sinense. *Liquidambar styraciflua were too numerous to count where new volunteers were noted.

Table VI. Vegetative Problem Areas			
Feature/Issue	Station # / Range	Probable Cause	Photo #
Stream Reach 1			
Rosa multiflora (Left Bank)	12+34	Invasive vegetative opportunism	
Rosa multiflora (Left Bank)	12+72 to 12+99	Invasive vegetative opportunism	
Rosa multiflora (Right Bank)	13+65	Invasive vegetative opportunism	
Rosa multiflora (Right Bank)	17+42	Invasive vegetative opportunism	1
Rosa multiflora (Right Bank)	18+38 to 18+79	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	20+22 to 20+67	Invasive vegetative opportunism	2
Stream Reach 2			
Rosa multiflora (Left Bank)	10+87 to 11+21	Invasive vegetative opportunism	
Rosa multiflora and Microstegium virmineum (Left Bank)	11+78 to 12+18	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	11+78 to 12+27	Invasive vegetative opportunism	
Rosa multiflora (Left Bank)	13+99 to 14+98	Invasive vegetative opportunism	1
Microstegium virmineum (Right Bank)	14+72 to 16+05	Invasive vegetative opportunism	2
Microstegium virmineum (Left Bank)	15+07 to 16+80	Invasive vegetative opportunism	
Ligustrum sinense (Left Bank)	15+76 to 16+65	Invasive vegetative opportunism	3
Microstegium virmineum (Right Bank)	16+38 to 16+97	Invasive vegetative opportunism	
Microstegium virmineum (Right Bank)	17+18 to 17+61	Invasive vegetative opportunism	
Rosa multiflora (Left Bank)	17+20 to 17+99	Invasive vegetative opportunism	
Ailanthus altissima (Left Bank)	17+75 to 18+03	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	17+49 to 18+97	Invasive vegetative opportunism	
Rosa multiflora (Right Bank)	17+68 to 19+69	Invasive vegetative opportunism	
Ligustrum sinense (Right Bank)	17+68 to 18+78	Invasive vegetative opportunism	
Ailanthus altissima (Right Bank)	17+83 to 18+47	Invasive vegetative opportunism	4
Microstegium virmineum (Right Bank)	18+69 to 19+49	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	19+29 to 20+39	Invasive vegetative opportunism	
Microstegium virmineum (Right Bank)	19+95 to 20+39	Invasive vegetative opportunism	
Stream Reach UT			
Microstegium virmineum (Right Bank)	12+16 to 12+42	Invasive vegetative opportunism	2
Microstegium virmineum (Left Bank)	12+80	Invasive vegetative opportunism	
Microstegium virmineum (Right Bank)	12+63 to 14+17	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	13+42 to 14+86	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	14+75	Invasive vegetative opportunism	
Microstegium virmineum (Right Bank)	14+75 to 15+09	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	15+30 to 15+39	Invasive vegetative opportunism	
Microstegium virmineum (Left Bank)	15+67	Invasive vegetative opportunism	
Microstegium virmineum (Right Bank)	15+20 to 16+88	Invasive vegetative opportunism	1
Microstegium virmineum (Right Bank)	19+58 to 19+77	Invasive vegetative opportunism	

APPENDIX A2

PHOTOLOG VEGETATION PROBLEM AREAS

APPENDIX A2 PHOTOLOG – WELLS CREEK (REACH 1)

PROBLEM AREAS (Vegetation)

Photo 1: Multiflora rose (*Rosa multiflora*) growth (Station No. 17+42; view upstream on right bank; 11-6-2008).

Photo 2: Japanese grass (*Microstegium virmineum*) growth (Station No. 20+; view upstream on right bank; 11-6-2008).

APPENDIX A2 PHOTOLOG – WELLS CREEK (REACH 2)

PROBLEM AREAS (Vegetation)

Photo 1: Multiflora rose (*Rosa multiflora*) growth (Station No. 13+99; view downstream on right bank; 11-6-2008).

Photo 3: Chinese privet (*Ligustrum sinense*) growth (Station No. 15+76; view is within Vegetation Plot 8; 11-6-2008).

Photo 2: Japanese grass (*Microstegium virmineum*) growth (Station No. 14+78; view downstream on right bank; 11-6-2008).

Photo 4: Tree of Heaven (*Ailanthus altissima*) growth (Station No. 17+83; view is within Vegetation Plot 9, *Ailanthus* trees appear leafless in photo; 11-6-2008).

APPENDIX A2 PHOTOLOG – WELLS CREEK (UT)

PROBLEM AREAS (Vegetation)

Photo 1: Japanese grass (*Microstegium virmineum*) growth (Station No. 15+20; view of right bank; 11-6-2008).

Photo 2: Japanese grass (*Microstegium virmineum*) growth along sidebar (Station No. 15+20; view dowsntream; 12-16-2008).

APPENDIX A3

PHOTOLOG VEGETATION PLOTS

APPENDIX A3 PHOTOLOG - WELLS CREEK

VEGETATION PLOTS

Photo 1: Vegetation Plot 1 (9-08-2008).

Photo 2: Vegetation Plot 2 (11-6-2008).

Photo 3: Vegetation Plot 3 (9-08-2008).

Photo 4: Vegetation Plot 4 (9-08-2008).

Photo 5: Vegetation Plot 5 (9-08-2008).

Photo 6: Vegetation Plot 6 (9-08-2008).

Photo 8: Vegetation Plot 8 (9-08-2008).

Photo 7: Vegetation Plot 7 (9-08-2008).

Photo 9: Vegetation Plot 9 (9-08-2008).

APPENDIX B1

PHOTOLOG STREAM PROBLEM AREAS

APPENDIX B1 PHOTOLOG – WELLS CREEK (REACH 1)

PROBLEM AREAS (Stream)

Photo 1: Representative aggradation/midbar problem area (Station No. 18+04; view upstream; 11-6-2008).

Photo 3: Representative midbar problem area (Station No. 18+02; view downstream; 11-6-2008).

Photo 5: Representative bank erosion problem area (Station No. 10+83; view across stream toward left bank on 3-20-2008).

Photo 2: Representative aggradation problem area (Station No. 15+74; view downstream; 11-6-2008).

Photo 4: Representative crossvane problem area (Station No. 12+75; view upstream; 11-6-2008).

Photo 6: Evidence of bankfull event (Station No. 12+75; view of right bank, note vegetation impact on bank; 9-8-2008).

APPENDIX B1 PHOTOLOG – WELLS CREEK (REACH 2)

PROBLEM AREAS (Stream)

Photo 1: Representative bank erosion problem area (Station No. 17+11; view upstream; 6-17-2008).

Photo 2: Representative problem j-hook and bank erosion (Station No. 17+74; view downstream; 6-17-2008).

Photo 3: Representative side bar problem area (Station No. 14+08; view downstream; 11-6-2008).

Photo 4: Representative beaver dam problem area (Station No. 12+59; view downstream; 2-25-2008).

APPENDIX B1 PHOTOLOG REACH 1 – WELLS CREEK (UT)

PROBLEM AREAS (Stream)

Photo 1: Representative jhook and bank erosion problem area (Station No. 16+42; bank erosion is in the right corner of picture; view downstream; 11-6-2008).

Photo 3: Representative sidebar problem area (Station No. 10+96; view downstream; 11-6-2008).

Photo 2: Representative bank erosion problem area (Station No. 10+11; view downstream of left bank; 6-10-2008).

Photo 4: Representative aggradation problem area (Station No. 11+99; view downstream; 6-9-2008).

APPENDIX B2

PHOTOLOG OF CROSS-SECTIONS AND PHOTO POINTS

APPENDIX B2 PHOTOLOG – WELLS CREEK (REACH 1)

CROSS-SECTIONS & PHOTOPOINTS

Cross-Section 1: View Downstream (3-20-2008).

Cross-Section 2: View Downstream (3-20-2008).

Cross-Section 3: View Downstream (11-6-2008).

Cross-Section 1: View Upstream (3-20-2008).

Cross-Section 2: View Upstream (3-20-2008).

Cross-Section 3: View Upstream (11-6-2008).

Cross-Section 4: View Downstream (11-6-2008).

Cross-Section 4: View Upstream (11-6-2008).

Photo point 1: View Upstream (3-20-2008).

Photo point 1: View Downstream (3-20-2008).

Photo point 1: Facing Channel (3-20-2008).

Photo point 2: View Upstream (3-20-2008).

Photo point 2: View Downstream (3-20-2008).

Photo point 2: Facing Channel (3-20-2008).

Photo point 3: View Upstream (3-20-2008).

Photo point 3: View Downstream (3-20-2008).

Photo point 3: Facing Channel (3-20-2008).

Photo point 4: View Upstream (3-20-2008).

Photo point 4: View Downstream (3-20-2008).

Photo point 4: Facing Channel (3-20-2008).

APPENDIX B2 PHOTOLOG WELLS CREEK (REACH 2)

CROSS-SECTIONS & PHOTOPOINTS

Cross-Section 9: View Downstream (6-12-2008).

Cross-Section 10: View Downstream (6-12-2008).

Cross-Section 11: View Downstream (6-17-2008).

Cross-Section 9: View Upstream (6-12-2008).

Cross-Section 10: View Upstream (6-12-2008).

Cross-Section 11: View Upstream (6-17-2008).

Cross-Section 12: View Downstream (6-19-2008).

Cross-Section 12: View Upstream (6-19-2008).

Photo point 5: View Downstream (11-6-2008).

Photo point 5: View Upstream (11-6-2008).

Photo point 5: Facing Channel (11-6-2008).

Photo point 6: View Downstream (6-12-2008).

Photo point 6: View Upstream (6-12-2008).

Photo point 6: Facing Channel (6-12-2008).

Photo point 7: View Downstream (6-12-2008).

Photo point 7: View Upstream (6-12-2008).

Photo point 7: Facing Channel (6-12-2008).

Photo point 8: View Downstream (6-17-2008).

Photo point 8: View Upstream (6-17-2008).

Photo point 8: Facing Channel (6-17-2008).

Photo point 9: View Downstream (6-19-2008).

Photo point 9: View Upstream (6-19-2008).

Photo point 9: Facing Channel (6-19-2008).

APPENDIX B2 PHOTOLOG WELLS CREEK (UT)

Cross-Section 5: View Downstream (6-09-2008).

Cross-Section 6: View Downstream (6-10-2008).

Cross-Section 7: View Downstream (6-10-2008).

Cross-Section 5: View Upstream (6-09-2008).

Cross-Section 6: View Upstream (6-10-2008).

Cross-Section 7: View Upstream (6-10-2008).

Cross-Section 8: View Downstream (6-10-2008).

Cross-Section 8: View Upstream (6-10-2008).

Photo point 10: View Downstream (6-09-2008).

Photo point 10: View Upstream (6-09-2008).

Photo point 10: Facing Channel (6-09-2008).

Photo point 11: View Downstream (6-10-2008).

Photo point 11: View Upstream (6-10-2008).

Photo point 11: Facing Channel (6-10-2008).

Photo point 12: View Downstream (6-10-2008).

Photo point 12: View Upstream (6-10-2008).

Photo point 12: Facing Channel (6-10-2008).

APPENDIX B3

STREAM DATA TABLES

									Tabl	e VIII	Basel We	ine Mo IIs Cre	orpholo eek/EE	ogyan P Nun	d Hydr nber 4'	aulic \$ 14	Summ	ary												
Parameter	USGS	Gage	Data	Regi I	onal Cu nterval	urve	Pr (e-Exist	ng n	Projec	t Refe Stream	rence	Desi	gn (SF	R#1)	As-b	uilt (SI	R#1)	Desi	gn (SR	R#2)	As-b	ouilt (S	R#2)	De	sign (U	T)	As	-built (L	JT)
	Min	Max	Med	Min	Max	Med	Min	Max N	ed	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min N	lax I	Med	Min M	Лах	Med	Min	Max	Med	Min	Max	Med
Dimension																														
BE Width (ft)	28	30	29			14 77	15.4	28.9	22 75	6.5	10	8			25	20.1	27.4	23.7		- 1	20	19.3	31.6	25.4		- 1	15	13.5	16	14.9
Floodporne Width (ft)	40	100	70				24.5	50	40.7	16	22	18.8			>55	48	66	57			>50	10.0	01.0	100			>33	50	77	63.5
BECross Sectional Area (ft)	58.6	58.9	58			29.9	22.2	34.8	31	3.0	63	5.3			33	25.2	42.8	34	32.2	36	34.1	44.2	47 1	45.6			17	13.5	16	14 7
BF Mean Depth (ft)	2	21	2			1 75	0.8	19	14	0.0	1	0.7			1.3	1.3	1.6	14	02.2	50	1.8	1.5	2.3	19			11	10.0	10	14.7
Max Depth (ft)	27	2.1	29			1.70	1.3	3.1	21	0.9	14	1 1	17	2.6	2.1	1.0	31	2.3	23	3.6	2.9	2.5	3.5	1.3	14	22	1.1	14	21	16
Width/Depth Ratio	13	15	14					38	18.3	7	26	13.5		2.0	19	16.1	17.6	16.8	2.0	0.0	11	8.4	21.2	14.8		2.2	12.5	14.8	15.3	15
Entrenchment Ratio	13	3.6	24				1	3.2	1 9	2	3.4	2.4			>22	10.1	17.0	2.4			22	3.2	5.2	4.2			22	3.5	4.9	4.2
Wetted Perimeter (ft)	33.6	33.7	33.65				16.8	20.2	24.1	72	11.7	2.4			27.6	21.5	28.2	24.9			23.6	21	33.1	-1.2			17.2	14.7	16.2	15.5
Hydraulic radious (ft)	17	17	1 7				10.0	1.8	24.1	0.3	0.9	0.7			1.0	1.2	20.2	1 35			23.0	1.4	2.1	1.8			17.2	0.9	10.2	0.95
Pattern	1.7	1.7	1.7			_		1.0	1.4	0.0	0.5	0.7			1.2	1.2	1.0	1.00			1.4	1.4	2.1	1.0				0.5		0.00
Chappel Beltwidth (ft)	_	1		r			6	271	60.4	10	35	20.0	33	110	65	20.5	105.6	55.0	26	88	52	32.5	81.8	57.2	10.5	66	30	17.8	71 7	45.4
Charine Beltwidth (it)							2.5	2/1	09.4	10	21.0	20.9		100	40	29.0	105.0	33.9	20	00	32	32.5	420	57.2	19.5	00	39	17.0	11.1	40.4
Radius of Culvature (II)							2.5	260	192.2	2.3	31.0	13.5	110	220	40	40.2	222.4	44.0	0	176	126	40	151.2	120.5	4.5	122	24	20	194.2	116.6
Meander Width Patio							3.2	0.1	10Z.Z	13	10	2.6	13	220	2.6	49.3	232.4	137.3	13	170	2.6	13.1	3.2	129.0	13	132	94.0	1.2	104.3	110.0
Drefile							5.2	3.1	5.5	1.5	4.4	2.0	1.5	4.4	2.0	1.2	4.4	2.0	1.5	4.4	2.0	1.5	J.2	2.2	1.5	4.4	2.0	1.2	4.0	5
Profile				-			<u> </u>	100 5	10.0			10.0			10.5				-		<u>.</u>		100.0			10.5			00 E	
Riffle length (ft)							3.4	108.5	40.2	2	25	13.9	6.3	77.5	42.5	20.1	110.8	41.1	5	62	34	14.3	128.3	38.2	3.8	46.5	25.5	5.6	89.5	26.7
Riffie slope (ft/ft)							0.0006	0.041	0.0208	0.0173	0.078	0.039	0.0042	0.019	0.011	0.002	0.019	0.007	0.006 0	0.0276	0.017	0.002	J.U228	0.0107	0.0058	0.0256	0.0154	0.0027	0.0483	0.02
Pool lengtri (II) Real appaign (ff)							3.5	210.0	43.6	17	62	14.5	22.5	00 107 5	45	7.4	93.9 176 F	21.2	10	159	30	4.0	04.0	43.0	13.5	110 5	27	20.9	120.6	50.0
Fooi spacing (it)							10.2	200.1	90.4	17	03	30.0	30	197.5	115	31	170.5	00.2	42	100	92	22.4	170.0	79.9	31.0	110.0	09	29.0	139.0	39.9
Substrate				-						-			-									_		0 5						
d50 (mm)									0.9			4.5						0.1						0.5						0.6
d84 (mm)									68			53						9						17						13
Additional Reach Parameters																														
Valley Length (ft)								2850			337			945			960			1010			1010			1415			859	
Channel Length (ft)								3714			447			1127			1193			1244			1127			1696			1083	
Sinuosity		l						1.3			1.3			1.2			1.2			1.3			1.1			1.2			1.3	
Water Surface Slope (ft/ft)	(0.0016						0.0084		(0.0197		().0047	7	(0.0049)	0	.0069			0.006	2		0.0064			0.0053	
BE slope (ft/ft)								0.79		(0199		(0047	7		0.0040)	0	0069			0.006	2		0.0064			0.0053	
Posgen Classification		B/C	I				E5 B	5 F5 3	nd G5		C4/1			C4/1			C5/1		0	C4/1	-		C/E//	1		C4/1			C5/1	
		5,0					сэ, в	5, 1 5, a	10.05		04/1			04/1			00/1			04/1	-	T	0/L4/			54/1		<u> </u>	00/1	
Habitat Index								IN/A																						
*Macrobenthos								N/A																						

Appendix B3

					Т	able IX a	a. Morj	phology Seg	and Hy Wells (gment/F	/draulio Creek Reach:	c Monite	oring S	ummar	у										
Parameter		Сі	oss Sect	tion 1 P	ool			Cro	oss Sect	tion 2 R	liffle			Cros	s Sect	tion 3 F	Riffle			Cros	s Sect	ion 4 P	ool	
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	36.9	26.4	26.4	25.76			19.6	20.4	20.1	16.6			33	28.8	27.6	28.3			30.4	26.1	24.6	24.0		
Floodprone Width (ft)	100+	NA	NA	NA			100+	85+	84+	83+			70+	43	49.5	71+			100+	NA	NA	NA		
BFCross Sectional Area (ft)	66.9	46.9	42.0	43.71			32.9	38.7	38.3	33.63			41.7	40.7	33.7	37.42			36.3	40.3	38.7	38.4		
BF Mean Depth (ft)	1.8	1.8	1.6	1.7			1.7	1.9	1.9	2.0			1.3	1.4	1.2	1.3			1.2	1.5	1.6	1.6		
Width/Depth Ratio	20.5	NA	NA	NA			11.5	10.7	10.6	8.2			25.4	20.5	22.6	21.4			25.3	NA	NA	NA		
Entrenchment Ratio	2.7	NA	NA	NA			5.1+	3.3+	4.2+	5.0+			>2.1	1.5	1.8	2.5+			3.3	NA	NA	NA		
Bank Height Ratio	NA	NA	NA	NA			1	1	1	1.03			1	1	1	1.01			NA	NA	NA	NA		
Wetted Perimeter (ft)	39.2	44.7	29.0	30.06			21.7	23.4	22.9	19.87			33.5	49.7	28.3	29.4			31.6	30.9	27.3	26.1		
Hydraulic radius (ft)	1.7	1.6	1.4	1.5			1.5	1.7	1.7	0.8			1.2	2	1.2	1.3			1.1	1.3	1.4	1.5		
Substrate																								I
d50 (mm)	NA	0.25	<0.062	0.19			8.3	0.25	<0.062	18			8	0.125	4.9	0.17			NA	0.25	1.1	9		
d84 (mm)	NA	11.3	<0.062	16			41	18	0.1	50			19	11.3	15.5	8.8			NA	11.3	70	64		
Parameter	M	Y-01 (2	005)	M	7-02 (2	006)	M	Y-03 (20	07)	M	Y-04 (20)08)	MY	05 (20	09)	MY	′+ (20 ⁻	10)						
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	1					
Channel Beltwidth (ft)	29	101.7	63.4	37.45	107.3	67.26	37.81	106.4	64.7	35.2	98.4	60.4												
Radius of Curvature (ft)	20	100	52.7	15	120	40	15	120	46.63	13.8	113.5	45.2												
Meander Wavelenght (ft)	123	465.1	246	136.45	324.8	198.45	119.0	357.2	195.1	116.6	238.2	152.9												
Meander Width Ratio	0.8	2.8	1.7	1.30	3.72	2.34	1.59	4.46	2.71	1.5661	4.38	2.69												
Profile																								
Riffle length (ft)	6.8	46.7	24.6	1.5	38.8	8.1	8.2	37.4	18.1	7.94	91.2	30.885												
Riffle slope (ft/ft)	0.000	0.032	0.012	0.000	0.473	0.015	0.000	0.038	0.010	0.001	0.027	0.004												
Pool length (ft)	5.9	128.9	36.5	6.2	108.0	23.5	12.2	134.0	33.9	13.73	125.27	34.15												
Pool spacing (ft)	20.5	169.5	66.2	25.1	239.4	46.5	22.6	220.2	49.5	30.56	246.44	56.25												
Additional Reach Parameters															_									
Valley Length (ft)		952			995			995			847													
Channel Length (ft)		1213			1244			1241			1068													
Sinuosity		1.3			1.2			1.2			1.3													
Water Surface Slope (ft/ft)		0.005			0.0052	2		0.0051			0.0050													
BF slope (ft/ft)		0.0055			0.0042	2		0.0045			0.0048													
Rosgen Classification		C4/1			C4			C4			C4/5													
*Habitat Index		NA			NA			NA			NA													
*Macrobenthos		NA			NA			NA			NA													

Table IX b. Morphology and Hydraulic Monitoring Summary Wells Creek Segment/Reach: 2																								
Parameter		Cro	ss Sec	ction 9 I	Riffle			Cro	ss Sec	ction 10	Pool			Cros	s Secti	on 11	Riffle			Cross	s Secti	on 12	Pool	
Dimension	MV1	MV2	MV3	M¥4	MY5	M⊻±	MV1	MV2	MV3	MY4	MY5	M⊻±	MV1	MV2	MV3	MV4	MV5	MV+	M⊻1	MV2	MV3	MV4	MV5	MV+
BE Width (ft)	23.1	19.5	20.6	21.1			27	20.8	20.8	21.4	WIT 0		20.9	18.8	19.6	22.9			22.1	22.1	21.4	25.1	WITO	
Floodprone Width (ft)	100+	45+	42+	42+			100+	NA	NA	NA			100+	38	45+	45+			100+	NA	NA	NA		
BFCross Sectional Area (ft)	44	41.6	42.6	41.8			54.8	51.4	48.4	47.9			40.9	47	44.0	42.9			35.5	52	46	53		
BF Mean Depth (ft)	1.9	2.1	2.1	2.0			2	2.4	2.3	2.2			2	2.5	2.2	1.9			1.6	2.3	2.2	2.1		
Width/Depth Ratio	12.1	10.8	10.0	10.6			13.5	NA	NA	NA			10.5	7.5	8.7	12.2			13.8	NA	NA	NA		
Entrenchment Ratio	4.3	2.3+	2.0+	2.0+			3.7+	NA	NA	NA			4.8+	2.0	2.3+	2.0+			4.5+	NA	NA	NA		
Bank Height Ratio	1	1	1	1.01			NA	NA	NA	NA			1	1	1	1.04			NA	NA	NA	NA		
Wetted Perimeter (ft)	24.9	22.4	22.4	23.2			28.6	23.7	23.2	23.9			22.5	22.9	22.6	25.9			23.4	31.9	26.3	29.7		
Hydraulic radius (ft)	1.8	1.9	1.9	1.8			1.9	2.2	2.1	2.0			1.8	2.1	1.9	1.7			1.5	1.7	1.7	1.8		
Substrate																								
d50 (mm)	12.5	8	39	17			NA	0.45	0.63	7			13.5	0.45	8.5	19.5			NA	0.25	0.59	4.9		
d84 (mm)	43	44	81	44			NA	32	1.7	15			23	32	58	32			NA	1	0.9	29		
Parameter	MY	-01 (20	05)	M١	′-02 (200	06)	MY-	-03 (20	07)	MY	′-04 (20	(80	MY-	05 (20	09)	M١	′ + (20′	10)						
						.											·							
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Channel Beltwidth (ft)	13.1	85.4	55	38.52	85.07	54.16	35.72	89.2	52.59	40.99	80.45	53.03												
Radius of Curvature (ft)	15	120	39.4	22	70	31.5	22	61	32.6	21.66	76	39.66												
Meender Wavelenght (ft)	105	180	134.8	115.79	149.77	127	94.3	156.5	126.0	108.01	157.39	137.54												
Reander Width Ratio	0.6	3.9	2.5	2.02	4.45	2.84	1.00	4.13	2.43	1.864	3.00	2.41												
Riffle length (ft)	3.8	53.9	26	13.0	53.0	26	12.0	42.8	22	15 29	46.3	26.6												
Riffle slope (ft/ft)	0.0018	0.039	0.014	0.000	0.041	0.011	0.002	0.051	0.018	0.004	0.030	0.023												
Pool length (ft)	17	128.4	42.9	5.8	208.8	39.7	7.2	78.4	34.0	21 75	93.5	46.7												
Pool spacing (ft)	46.4	184.3	87	23.6	117.8	76.8	22.2	102.2	69.0	21.87	123.9	73.7												
Additional Reach Parameters																								
Valley Length (ft)		906			903			908			829													
Channel Length (ft)		1127			1140			1153			1040													
Sinuosity		1.24			1.26			1.27			1.25													
Water Surface Slope (ft/ft)		0.0053			0.0050			0.0055			0.0060													
BF slope (ft/ft)		0.0058			0.0050			0.0058			0.0060													
Rosgen Classification		C4/1			E4			C4			C4													
*Habitat Index NA NA									///////////////////////////////////////	111111111111	111111111111	V/////////////////////////////////////	///////////////////////////////////////	1111111111111										
Tiabitat Index		INA			NA			NA			NA													

					Ta	able IX	c. Mo	rphole	ogy an We Segme	nd Hyd ells Cro ent/Rea	raulic eek ich: U	Monito F	ring S	umma	ry									
Parameter		Cro	oss Se	ction 5-	Pool			Cros	ss Sec	tion 6 -	Riffle			Cros	s Secti	on 7 - I	Riffle			Cros	s Sect	ion 8 - F	Pool	
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	17	14.4	14.7	16.8			18.2	20.4	14.7	18.0			17.8	9.2	14.6	14.2			15.8	18.9	17.4	19.4		
Floodprone Width (ft)	67	NA	NA	NA			72	67	73	75			50	67	59	59			50	NA	NA	NA		
BFCross Sectional Area (ft)	18.3	21.9	22.8	21.3			12.8	14.4	15.8	14.6			13.1	13.6	16.8	15.6			22.3	23	26.2	26.9		
BF Mean Depth (ft)	1.1	1.5	1.6	1.3			0.7	0.7	0.9	0.8			0.7	1.5	1.2	1.1			1.4	1.2	1.5	1.4		
Width/Depth Ratio	15.5	NA	NA	NA			26	26.9	17.1	22.0			25.4	6.2	12.7	12.9			11.3	NA	NA	NA		
Entrenchment Ratio	3.9	NA	NA	NA			4	3.4	4.6	4.2			2.8	7.2	4.0	4.2			3.2	NA	NA	NA		
Bank Height Ratio	NA	NA	NA	NA			1	1	1	1.04			1	1	1	1.13			NA	NA	NA	NA		
Wetted Perimeter (ft)	18.1	19.9	17.4	19.66			18.5	21.6	16.6	18.63			18.2	39.6	15.4	14.88			17.2	26.2	20.0	21.29		
Hydraulic radius (ft)	1	1.1	1.3	1.1			1	0.7	0.9	0.8			0.7	0.8	1.1	1.1			1.3	1.1	1.3	1.3		
Substrate																								
d50 (mm)	NA	0.5	7.2	10.9			0.2	1	10	17			0.1	0.5	2	1.8			NA	0.5	1.7	<0.062		
d84 (mm)	NA	23	42	31			22	32	25	44			35	18	30	50			NA	18	18	13		
Parameter	MY-	01 (20	05)	M١	/-02 (200	06)	MY-	03 (20	07)	MY	-04 (20	008)	MY-	05 (20	09)	MY	′ + (201	10)						
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Channel Beltwidth (ft)	9.4	67.7	42.4	27.33	72.73	56.87	30.93	72.93	58.77	32.63	63.7	48.0												
Radius of Curvature (ft)	8	110	40.1	18.63	79.72	28.26	18.11	87.52	26.88	17.73	80.9	27.9												
Meander Wavelenght (ft)	71	176	116.7	91.3	191.72	136.74	88.71	189.8	144	85.44	191.0	134.5												
Meander Width Ratio	0.5	3.8	2.4	1.39	3.71	2.90	1.82	4.29	3.46	2.0267	3.959	2.9789												
Profile																								
Riffle length (ft)	8.2	49.8	21.8	3.3	69.3	19.1	6.2	42.7	15.2	5.87	55.64	16.5												
Riffle slope (ft/ft)	0.000	0.045	0.016	0.000	0.038	0.012	0.000	0.050	0.013	0.004	0.052	0.022												
Pool length (ft)	7.6	57.2	27	4.8	39.2	25.2	7.7	54.7	31.2	15.53	78.64	44.6												
Pool spacing (ft)	22	125.4	64	35.3	100.6	60.7	16.8	89.3	52.3	22.16	102.7	65.2												
Additional Reach Parameters																								
Valley Length (ft)		841			853			852			846													
Channel Length (ft)		1014			1012			1014			1021													
Sinuosity		1.2			1.2			1.2			1.2													
Water Surface Slope (ft/ft)		0.0057			0.0060			0.0060			0.0058													
BF slope (ft/ft)		0.0060			0.0060			0.0060			0.0052													
Rosgen Classification		C4/1			C4			C4/5			C4/5													
*Habitat Index		NA			NA			NA			NA													
*Macrobenthos		NA			NA			NA			NA													

	т	able B1 a. Stream Problem Areas	
		Wells Creek Reach 1	
Feature Issue	Station	Suspected Cause	Photo
	numbers		number
Aggradation	10+17.59	Channel built too wide for riffle; narrowing to a stable dimension	
	10+49.44		
Rootwad	10+85.92	-	
Rootwad	10+92.05	Location of rootwads upstream creating backeddys around downstream	
		rootwads and contributing to bank erosion problem directly downstream	5
Rootwad	10+97.30		
Bank Erosion (Left)	10+97.30	Upstream rootwads should have been placed further downstream to	
-	11+18.09	prevent erosion.	
Cross-Vane	12+75	Piping around right side of structure.	4
Bank Erosion (Left)	12+96	Lack of vegetation; Also flow direction coming from upstream crossvane	
	13+13	and backwater affect of downstream j-hook.	
Aggradation	15+74.5	Channel built tee wide, perrowing to a stable dimension	2
	16+18.15	Charmer built too wide, harrowing to a stable dimension	2
Central Bar Formation	17+33.30	Sediment aggradation forming bar in middle of pool.	
	17+40.57		
Aggradation	17+59.5	Channel built tee wide: perrowing to a stable dimension	
	17+73		
Aggradation	17+98.63	Channel built too wide: parrowing to a stable dimension	2
	18+03.73		3
Central Bar Formation	18+04.44	Downstream rootwads and cross-vane causing deposition upstream and	1
	18+28.29	creation of a central bar with grasses.	I
Aggradation	19+12.66	Channel built too wide: parrowing to a stable dimension	
	19+32.94		
Aggradation	19+73.20	Channel built too wide: parrowing to a stable dimension	
	19+83.80		
Aggradation	19+97.66	Channel huilt too wide: parrowing to a stable dimension	
	20+09.84		

Table B1 b. Stream Problem Areas											
		Wells Creek Reach 2									
Feature Issue	Station	Suspected Cause	Photo								
	numbers		number								
Bank Erosion (Left)	10+31.77	Possibly due to rootwad/j-hook placement upstream, soil stability,									
	10+35.79	lack of vegetation, and/or radius of curvature									
Bank Erosion (Left)	10+83.00	Sail instability and/or look of protostive vegetation									
	11+44.30	Soli instability and/or lack of protective vegetation.									
Bank Erosion (Right)	10+82.63	Sail instability and/or lack of protoctive vegetation									
	11+14.39	Soli instability and/or lack of protective vegetation.									
Rootwad	11+97.63	Angle/placement possibly cause of bank erosion directly downstream.									
	40.04.05										
Bank Erosion (Left)	12+01.85	Angle/placement of rootwad directly upstream. Also soil instability and/or lack of protective									
	12+16.23	vegetation.									
Rootwad	12+83.37	Placement angle/size is major cause of severe erosion directly downstream.									
Bank Erosion (Right)	12+86.43										
	12+96.19	Placement angle & size of rootwad directly upstream.									
Side Bar Formation (right)	13+18.83	O adias ant han famaia a alega a a riffla a satism									
	13+49.97	Sediment bar forming along a riffle section.									
Severe Bank Erosion (Left)	13+41.33	Soil instability and/or lack of protective vegetation. Adjacent j-hook possibly placed too far									
	13+44.37	downstream and/or angle is directing flow into bank.									
J-hook	13+41.27										
		See above comment.									
Bank Erosion (Left)	13+70.88										
	13+78.80	Soil instability and/or lack of protective vegetation on outside of meander.									
Lbook	1/1+08 23										
0-HOOK	14100.20	Significant piping around right side of structure, minor piping around left side.	3								
Bank Erosion (Right)	14+51.23										
	14+56.43	Soil instability and/or lack of protective vegetation on outside of meander.									
Severe Bank Erosion (Right)	14+72.51	Soil instability and/or lack of protective vegetation.									
·····	14+96.31										
J-hook	15+11.87										
		Placement/angle possible cause of downstream adjacent erosion.									
Severe Bank Erosion (Right)	15+36.40	Placement/angle of j-hook directly upstream. Also soil instability and/or lack of protective									
	15+97.12	vegetation.									
J-hook (severe)	16+15.52	Placement/angle probable cause of downstream adjacent erosion. Flow									
		being directed into bank.									
Bank Erosion (Left)	17+11.16	Soil instability and/or lack of protective vegetation. Crossvane directly upstream not adequtely	4								
	17+48.71	dissipating flow energy during high flow events.	I								
J-hook	17+74.81	Discoment/engle receible course of downstream eracion	0								
			2								
Bank Erosion (Right)	19+50.56	Soil instability and/or lack of protective vegetation. Adjacent j-hook possibly placed too far									
	19+63.57	downstream and/or angle is directing flow into bank.									
J-hook	19+61.24	See above comment.									
Beaver Dam	end	Beaver dam has been built just upstream of the culvert at the end of the	4								
		restoration reach.									

	Та	able B1 c. Stream Problem Areas	
		Wells Creek Reach UT	
Feature Issue	Station numbers	Suspected Cause	Photo number
J-hook	10+00.00	Improper angle and placement of J-hook may be cause of adjacent bank erosion	
Bank Erosion (Left)	10+11.19 10+26.86	Possibly caused by improper placement of J-hook directly upstream	2
Side Bar Formation (Both Banks)	10+96.5 11+13	Former aggradation and resultant downcutting has the stream to narrow and form side bars along this riffle.	3
Side Bar Formation (Right)	11+79.04 11+88.02	Excess sediment deposition has formed a side bar along this riffle.	
Aggradation	11+99.69 12+15.41	Channel narrowing to stable state	4
Aggradation	12+63.86 12+82.80	Channel narrowing to stable state	
Aggradation	13+39.02 13+46.90	Channel narrowing to stable state as evidenced by lateral bar formation.	
Aggradation	14+29.59 14+50.45	Channel narrowing to stable state	
Aggradation	14+94.38 15+02.93	Channel narrowing to stable state	
J-hook	16+42.88	Angle and/or placement of J-hook causing bank erosion downstream	1
Bank Erosion (Left)	16+57.82 16+60.64	Possibly due to midirected flow (into outside bank of meander) from J-hook directly upstream	
Rootwad (severe)	18+15.83	Bank failure/undermining around structure and placement too high	
Rootwad	18+21.85	Placed too high.	
Rootwad	18+28.19	Placed too high.	
Aggradation	18+94.16 19+13.69	Channel narrowing to stable state	
Rootwad	19+35.61	Some minimal bank failure/undermining around structure.	
Rootwad	19+42.96	Some minimal bank failure/undermining around structure.	
Side Bar Formation (Left)	19+37.35 19+70.02	Channel narrowing to stable state	

Table B2 a. Visual Morphological Stability Assessment Wells Creek													
	Wells Creek												
	Segment/Reach: 1 (124	1 feet)											
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total							
A. Riffles	1. Present	12	15	NA	80%								
	2. Armor stable	12	15	NA	80%								
	3. Facet grade appears stable	12	15	NA	80%								
	4. Minimal evidence of embedding/fining	6	15	NA	40%								
	5. Length appropriate	12	15	NA	80%	72%							
B. Pools	1. Present	17	18	NA	94%								
	2. Sufficiently deep	17	18	NA	94%								
	3. Length appropriate	16	18	NA	89%	93%							
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	5	6	NA	83%								
	2. Downstream of meander (glide/inflection) centering	5	5	NA	100%	92%							
D. Meanders	1. Outer bend in state of limited/controlled erosion	9	10	NA	90%								
	2. Of those eroding, # w/concomitant point bar formation	1	1	NA	100%								
	3. Apparent Rc within specifications	8	10	NA	80%								
	4. Sufficient floodplain access and relief	10	10	NA	100%	93%							
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	9/168.3	84%								
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	92%							
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	2/37.8	98%	98%							
G. Vanes / J Hooks etc.	1. Free of back or arm scour	14	14	NA	100%								
	2. Height appropriate	14	14	NA	100%								
	3. Angle and geometry appear appropriate	14	14	NA	100%								
	4. Free of piping or other structural failures	13	14	NA	93%	98%							
H. Wads and Boulders	1. Free of scour	15	16	NA	94%								
	2. Footing stable	16	16	NA	100%	97%							

	Table B2 b. Visual Morphological Stability Assessment													
	Wells Creek													
	Segment/Reach: 2 (115	3 feet)												
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total								
A. Riffles	1. Present	9	10	NA	90%									
	2. Armor stable	9	10	NA	90%									
	3. Facet grade appears stable	9	10	NA	90%									
	4. Minimal evidence of embedding/fining	9	10	NA	90%									
	5. Length appropriate	8	10	NA	80%	88%								
B. Pools	1. Present	13	13	NA	100%									
	2. Sufficiently deep	13	13	NA	100%									
	3. Length appropriate	13	13	NA	100%	100%								
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	6	6	NA	100%									
	2. Downstream of meander (glide/inflection) centering	5	5	NA	100%	100%								
D. Meanders	1. Outer bend in state of limited/controlled erosion	4	10	NA	40%									
	2. Of those eroding, # w/concomitant point bar formation	4	6	NA	67%									
	3. Apparent Rc within specifications	8	10	NA	80%									
	4. Sufficient floodplain access and relief	10	10	NA	100%	72%								
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	1/31.1	97%									
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	0/0	100%	99%								
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	12/272.5	87%	87%								
G. Vanes / J Hooks etc.	1. Free of back or arm scour	11	13	NA	85%									
	2. Height appropriate	13	13	NA	100%									
	3. Angle and geometry appear appropriate	8	13	NA	62%									
	4. Free of piping or other structural failures	12	13	NA	92%	85%								
H. Wads and Boulders	1. Free of scour	4	6	NA	67%									
	2. Footing stable	6	6	NA	100%	83%								

	Table B2 c. Visual Morphological Stability Assessment Wells Creek													
	Wells Creek													
	Segment/Reach: UT (10	13 feet)	1											
Feature Category	Metric (per As-built and reference baselines)	(#Stable) Number Performing as Intended	Total Number per As-built	Total Number / feet in unstable state	% Performing in Stable Condition	Feature Performance Mean or Total								
A. Riffles	1. Present	14	15	NA	93%									
	2. Armor stable	13	15	NA	87%									
	3. Facet grade appears stable	13	15	NA	87%									
	4. Minimal evidence of embedding/fining	8	15	NA	53%									
	5. Length appropriate	12	15	NA	80%	80%								
B. Pools	1. Present	17	17	NA	100%									
	2. Sufficiently deep	17	17	NA	100%									
	3. Length appropriate	17	17	NA	100%	100%								
C. Thalweg	1. Upstream of meander bend (run/inflection) centering	6	6	NA	100%									
	2. Downstream of meander (glide/inflection) centering	6	6	NA	100%	100%								
D. Meanders	1. Outer bend in state of limited/controlled erosion	11	13	NA	85%									
	2. Of those eroding, # w/concomitant point bar formation	1	2	NA	50%									
	3. Apparent Rc within specifications	10	11	NA	91%									
	4. Sufficient floodplain access and relief	13	13	NA	100%	81%								
E. Bed General	1. General channel bed aggradation areas (bar formation)	NA	NA	9/149.6	85%									
	2. Channel bed degradation - areas of increasing down cutting or head cutting	NA	NA	1/16.5	98%	92%								
F. Bank Condition	1. Actively eroding, wasting, or slumping bank	NA	NA	2/18.5	99%	99%								
G. Vanes / J Hooks etc.	1. Free of back or arm scour	13	13	NA	100%									
	2. Height appropriate	13	13	NA	100%									
	3. Angle and geometry appear appropriate	11	13	NA	85%									
	4. Free of piping or other structural failures	13	13	NA	100%	96%								
H. Wads and Boulders	1. Free of scour	13	16	NA	81%									
	2. Footing stable	13	16	NA	81%	81%								

APPENDIX B4

STREAM CROSS-SECTIONS

Field Crew:	IPJ and PDB
Stream Reach:	1
Project:	Wells Creek
Drainage Area:	1.63
Date:	Jan-08
Monitoring Year	4

STATION	ELEVATION	NOTES	-					
(Feet)	(Feet)				Bai	nkfull		
0.00	647.12				Hydraulic	: Geometry		
0.04	646.53			Width	Depth	Perimeter	Area	
9.80	646.84			(Feet)	(Feet)	(Feet)	(Sq. Ft.)	
19.70	646.85			0.00	0.00	0.00	0.00	
25.43	644.80			1.39	0.24	1.42	0.17	
29.72	644.81			0.15	0.92	0.69	0.08	
32.68	644.72			1.95	0.99	1.95	1.86	
35.05	644.48			0.39	1.37	0.55	0.47	
36.84	644.42	TOB		1.10	2.69	1.72	2.23	
38.39	644.10			1.79	3.35	1.91	5.40	
38.54	643.42			2.17	3.33	2.17	7.25	
40.49	643.35			1.49	3.30	1.49	4.95	
40.89	642.97			1.73	3.24	1.73	5.65	
41.98	641.65	LEW		1.14	2.58	1.32	3.33	
43.78	640.99			0.10	1.27	1.31	0.20	
45.95	641.01			0.21	0.94	0.39	0.23	
47.44	641.04	Thalweg		1.43	0.67	1.45	1.15	
49.16	641.10			1.42	0.25	1.48	0.66	
50.30	641.76			0.14	0.00	0.29	0.02	
50.41	643.07	REW	TOTALS	16.60		19.87	33.63	
50.62	643.40						· · · · · · · · · · · · · · · · · · ·	
52.04	643.67							
53.46	644.09			SUMMAR	RY DATA (BANKFULL)		Bankfull datum* = 644.34	4
53.87	645.08		A(BKF)	33.63	W(FPA)	83+	*Datum reset during Monitorir	ng Year 3.
55.74	644.71		W(BKF)	16.60	WP	19.87		
58.10	644.50		Max d	3.35	Hydraulic Radius	0.84		
62.29	645.34		Mean d	2.03	Wetted Perimeter=	WP	1	
65.60	645.72		W/D	8.19	Area=	А		
67.51	645.84		Bank Height	3.43	Width=	W		
70.27	646.87		Entrenchment	5.0+	Depth=	D		
75.97	647.08		Stream Type	С	Bankfull=	BKF	1	
82.89	646.94		Area from Rural	Regional	Curve	30.5	1	
82.96	647.57		-	-			=	

ield Crew: Stream Reach:	IPJ and PDB 1							
roject:	Wells Creek							
)rainage Area:	1.63							
Anitoring Year	Jan-08 4							
STATION		NOTES				Bankfull		-
(Feet)	(Feet)	NOTES			Hydra	Bankiun aulic Geometr	v	
0.00	645.88			Width	Depth	Perimeter	Area	
0.14	645.35			(Feet)	(Feet)	(Feet)	(Sq. Ft.)	
10.57	645.27			0.00	0.00	0.00	0.00	
18.89	645.12			1.77	0.53	1.84	0.46	
23.87	643.58			2.40	1.47	2.57	2.39	
27.18	643.24			3.24	1.68	3.25	5.10	
29.33	643.17			0.77	2.17	0.92	1.49	
32.47	641.20			0.04	2.20	0.04	1.03	
38.11	641.09	IEW		1.54	1.00	1.59	2 47	
38.88	640.60			0.43	1.67	0.47	0.68	
39.72	640.57	Thalweg		0.42	1.98	0.52	0.76	
41.26	640.97	Edge bar		0.78	1.91	0.78	1.52	
42.77	641.30	-		2.14	1.65	2.16	3.81	
43.20	641.10	Edge bar		0.86	1.42	0.89	1.32	
43.62	640.79			1.86	1.65	1.88	2.86	
44.40	640.86			1.70	1.58	1.70	2.75	
46.54	641.12	REW		1.94	0.85	2.07	2.35	
47.40	641.35			0.61	0.73	0.62	0.48	
49.27	641.12			1.46	1.28	1.56	1.47	
52.91	641.92		TOTAL S	28.30	0.00	29.44	37.42	
53 51	642.04		TOTALO	20.00		20.77	57.12	
54.97	641.49							
59.02	642.80	ТОВ	SU	MMARY	DATA (BANKFUL	L)	Bankfull datum* =	642.77
63.34	642.77		A(BKF)	37.42	W(FPA)	71+	*Datum reset during	Monitoring Year 3
67.17	643.19		W(BKF)	28.30	WP	29.44		
70.93	644.63		Max d	2.20	Hydraulic Radius	1.27		
80.48	644.66		Mean d	1.32	Wetted Perimeter	= WP		
90.55	644.97		W/D Book Hoight	21.40	Area	= A		
100.44	645.19		Entronchmont	2.22	Viatri	= VV - D		
107.11	645.89		Stream Type	2.5+	Bankfull	= D - BKF		
	010.00		Oliouni Type	<u> </u>	Darita	20.5		
			Area from Rural	Regiona	i Curve	30.5		
101.20			Area from Rural	Regiona ection #	43	30.3		
660			Area from Rural Cross S Ri	Regiona ection # iffle	43	30.3		
660			Area from Rural	Regiona ection #	3		-	
660			Area from Rural	Regiona ection #	3		-	
660			Area from Rural	Regiona ection #	3			
660			Area from Rural	Regiona ection # iffle	3		-	
660 655 <u>55</u> <u>5</u> <u>650</u>			Area from Rural	Regiona ection # iffle	3		-	
660 655 (1) 10 650 (1) 10 650 (1) 10 650 (1) 10 650 (1) 10			Area from Rural Cross S Ri Bankfull	Regiona ection # iffle	/3	30.3		
660 655 (jeej) 645			Area from Rural Cross S Ri Bankfull	Regiona ection # iffle	/3		-	
660 655 655 645 645 640			Area from Rural Cross S Ri Bankfull	Regiona ection # iffle	/3			
660 655 655 645 640 640 640			Area from Rural Cross S Ri Bankfull	Regiona ection # iffle	/3			
660 655 650 645 645 645 645 645 645 635			Area from Rural Cross S Ri Bankfull	Regiona ection # iffle	/3			
660 655 650 645 645 640 635 635			Area from Rural Cross S Ri Bankfull	ection #	/3			
660 655 650 (tag) 645 640 635 635 630			Area from Rural Cross S Ri Bankfull	ection #	/3			
660 655 650 645 645 645 640 635 630 625			Area from Rural Cross S Ri	Regiona ection # iffle	/3			

Field Crew:	IPJ and PDB	
Stream Reach:	1	
Project:	Wells Creek	
Drainage Area:	1.63	
Date:	Jan-08	
Monitoring Year	4	
STATION	ELEVATION	NOTES
(Feet)	(Feet)	
0.00	644.83	
0.16	644.50	
10.04	643.59	
19.88	643.34	
24.21	643.15	
25.84	642.74	
20 40	641 70	

30.02 35.68

42.17 43.60 44.60 46.03

47.33 48.81 51.85 53.81

61.31 68.04 71.01 76.20 80.01

ELEVATION	NOTES		Bankfull/Top of Bank						
(Feet)			Hydraulic Geometry						
644.83			Width	Depth	Perimeter	Area			
644.50			(Feet)	(Feet)	(Feet)	(Sq. Ft.)			
643.59			0.00	0.00	0.00	0.00			
643.34			0.95	0.23	0.97	0.11			
643.15			1.31	0.94	1.50	0.77			
642.74			0.68	1.33	0.78	0.77			
641.70			0.90	2.02	1.13	1.51			
641.62			2.18	1.42	2.26	3.75			
641.66			1.43	3.17	2.26	3.29			
641.32			1.00	3.70	1.13	3.42			
640.61			1.44	3.55	1.44	5.20			
640.22	LEW		1.30	3.27	1.33	4.43			
639.53			1.48	2.73	1.58	4.46			
640.13			3.03	1.32	3.34	6.14			
638.38			1.97	0.88	2.01	2.17			
637.85	Thalweg		4.91	0.08	4.98	2.37			
638.00			1.38	0.00	1.38	0.06			
638.28		TOTALS	23.95		26.09	38.44			
638.82			-						
640.23	REW								
640.67			<u>SUMMAR</u>	Y DATA		Bankfull datum* = 641.55			
641.47			A(BKF)	38.44		*Datum reset during Monitoring Year			
641.60	TOB		W(BKF)	23.95					
641.67			Max d	3.70					
641.95			Mean d	1.60					
643.00			Wet. P	26.09					
643.20			Hyd. R	1.47					
643.28									
643.13									
643.09									
643.73									

Field Crew:	IPJ and KC
Stream Reach:	UT
Project:	Wells Creek
Drainage Area:	0.71
Date:	Jun-07
Monitoring Year	4

STATION (Feet)	ELEVATION (Feet)	NOTES			Bank Hydi	full/Top of Bank aulic Geometry	C	
0.00	609.70			Width	Depth	Perimeter	Area	
0.10	609.24			(Feet)	(Feet)	(Feet)	(Sq. Ft.)	
6.92	608.88			0.0	0.0	0.00	0.0	
10.24	608.43			3.0	0.1	3.01	0.1	
20.06	605.94			1.5	0.5	1.58	0.4	
26.20	605.45			1.2	0.4	1.25	0.5	
43.11	604.93			1.2	1.0	1.36	0.8	
44.63	604.54			0.2	1.6	0.66	0.3	
45.88	604.66			0.1	2.0	0.40	0.2	
47.08	604.02			2.4	2.6	2.47	5.5	
47.29	603.39	LEW		0.7	2.8	0.77	2.0	
47.40	603.00			1.2	3.3	1.33	3.7	
49.81	602.45			0.5	2.2	1.23	1.4	
50.55	602.25			1.8	2.3	1.83	4.1	
51.79	601.75	Thalweg		0.3	1.7	0.76	0.7	
52.32	602.86			0.5	0.9	0.92	0.7	
54.14	602.69			1.9		2.09	0.8	
54.49	603.37	REW	TOTALS	16.8		19.66	21.3	
55.01	604.12		-					-
57.44	605.26	ТОВ						
60.20	605.41			<u>SUMMA</u>	RY DATA		Bankfull datum* =	605.02
70.20	605.41			A(BKF)	21.3		*Datum reset during N	Ionitoring Year 3.
74.40	605.73			W(BKF)	16.8			
78.33	607.33	1		Max d	3.3			
81.47	607.67			Mean d	1.3			
85.58	607.92			Wet. P	19.66			
85.64	608.41			Hyd. R	1.09			

Field Crew:	IPJ and KC
Stream Reach:	UT
Project:	Wells Creek
Drainage Area:	0.71
Date:	Jun-07
Monitoring Year	4

STATION (Feet)	ELEVATION (Feet)	NOTES
0.00	609.58	
0.06	609.07	
1.69	608.91	
11.49	606.14	
16.76	604.16	
29.31	604.43	
39.18	604.43	
43.46	604.33	TOB
45.36	603.91	
45.90	603.89	
47.16	603.78	
48.35	603.28	
49.21	603.21	
51.12	602.64	LEW
51.94	602.45	
52.61	602.42	Thalweg
53.19	602.39	
53.32	602.63	REW
53.96	602.82	
55.18	602.78	
57.46	603.63	
59.01	603.43	
60.53	603.98	
63.32	604.21	ТОВ
74.13	604.21	
79.19	604.10	
82.08	605.72	1
89.73	606.13	1
89.77	606.49	

	Bankfull/Top of Bank Hydraulic Geometry						
	Width	Depth	Perimeter	Area			
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)			
	0.0	0.0	0.00	0.0			
	1.0	0.2	0.99	0.1			
	0.5	0.3	0.54	0.1			
	1.3	0.4	1.26	0.4			
	1.2	0.9	1.30	0.7			
	0.9	0.9	0.86	0.8			
	1.9	1.5	2.00	2.3			
	0.8	1.7	0.84	1.3			
	0.7	1.7	0.68	1.2			
	0.6	1.8	0.57	1.0			
	0.1	1.5	0.28	0.2			
	0.6	1.3	0.67	0.9			
	1.2	1.4	1.22	1.6			
	2.3	0.5	2.43	2.1			
	1.6	0.7	1.57	1.0			
	1.5	0.2	1.61	0.7			
	1.8		1.83	0.2			
TOTALS	18.0		18.63	14.6			
<u>SU</u>	MMARY D	ATA (BANKFULL)		Bankfull datum* =			
$\Delta(BKF)$	14.6	\//EDA)	75	*Datum reset during M			

SUN	SUMMARY DATA (BANKFULL)									
A(BKF)	A(BKF) 14.6 W(FPA)									
W(BKF)	18.0	WP	18.63							
Max d	1.8	Hydraulic Radius	0.79							
Mean d	0.8	Wetted Perimeter=	WP							
W/D	22.0	Area= A								
Bank Height	1.83	Width=	W							
Entrenchment	4.2	Depth=	D							
Stream Type	Bankfull=	BKF								
Area from Rural Regi	Area from Rural Regional Curve 17.5									

Bankfull datum* =604.15Datum reset during Monitoring Year 3.

Field Crew:	IPJ and KC
Stream Reach:	UT
Project:	Wells Creek
Drainage Area:	0.71
Date:	Jun-07
Monitoring Year	4

Field Crew:	IPJ and KC
Stream Reach:	UT
Project:	Wells Creek
Drainage Area:	0.71
Date:	Jun-07
Monitoring Year	4

STATION (Feet)

0.05 8.10 11.96

18.25 19.53 21.21 22.32 23.97 25.41 27.27 28.14 30.03 30.49 31.07 32.51 33.55 34.82 38.25 46.15 50.18 53.65

56.84 57.23

57.35

ELEVATION	NOTES						
(Feet)		Γ		Bank	kfull/Top of Ban	k	7
604.91				Hydi	raulic Geometry	,	
604.59			Width	Depth	Perimeter	Area	
604.14			(Feet)	(Feet)	(Feet)	(Sq. Ft.)	
602.33			0.0	0.0	0.00	0.0	
601.64			0.5	0.0	0.50	0.0	
601.62			1.3	0.1	1.28	0.1	
601.25			1.7	0.4	1.72	0.4	
599.63	REW		1.1	2.1	1.96	1.4	
599.09			1.7	2.6	1.74	3.8	
598.82	Thalweg		1.4	2.9	1.47	3.9	
598.80			1.9	2.9	1.85	5.3	
598.80			0.9	2.9	0.87	2.5	
599.38			1.9	2.3	1.98	4.9	
599.64	REW		0.5	2.0	0.53	1.0	
600.70			0.6	1.0	1.21	0.9	
601.06			1.4	0.6	1.48	1.1	
601.12			1.0	0.6	1.05	0.6	
601.35			1.3	0.3	1.29	0.6	
601.83	тов		2.3		2.36	0.4	
601.90		TOTALS	19.4		21.29	26.9	
601.95		-					—
603.06							
603.77]					_	
603.78]		SUMM/	ARY DATA		Bankfull datum* =	601.68
604.35			A(BKF)	26.9		*Datum reset during N	Ionitoring Year 3.

W(BKF)

Max d Mean d

Wet. P

19.4 2.9

1.4

21.29

Hyd. R 1.27 Cross Section #8 Pool 610 608 606 604 Elevation (feet) Bankfull 602 600 598 596 594 592 590 0 5 10 15 20 25 30 35 40 45 50 55 Distance (feet)

Field Crew:	IPJ and KC	
Stream Reach:	2	
Project:	Wells Creek	
Drainage Area:	2.23	
Date:	Jun-08	
Monitoring Year:	4	

STATION (Feet)	ELEVATION (Feet)	NOTES
0.00	605.10	
0.05	604.68	
8.60	604.78	
10.29	604.73	BKF
11.26	604.03	
12.12	603.95	
12.33	602.77	
13.42	602.84	
15.18	601.67	LEW
15.46	601.64	
16.55	601.63	
17.95	601.48	Thalweg
19.29	601.69	REW
20.51	602.01	
21.17	602.35	
23.32	602.76	
24.68	602.64	
26.37	602.73	
27.75	603.04	
31.52	604.75	тов
37.10	605.16	
41.11	605.41	
41.13	606.03	

		Bank Hydr	full/Top of Bank aulic Geometry	
	Width	Depth	Perimeter	Area
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.00	0.0
	0.9	0.7	1.15	0.3
	0.9	0.8	0.87	0.6
	0.2	1.9	1.20	0.3
	1.1	1.9	1.09	2.1
	1.8	3.0	2.11	4.3
	0.3	3.1	0.29	0.9
	1.1	3.1	1.09	3.3
	1.4	3.2	1.40	4.4
	1.3	3.0	1.36	4.2
	1.2	2.7	1.26	3.5
	0.7	2.3	0.75	1.7
	2.1	1.9	2.18	4.6
	1.4	2.1	1.37	2.7
	1.7	2.0	1.69	3.4
	1.4	1.7	1.42	2.5
	3.7		4.01	3.0
TOTALS	21.1		23.23	41.8

SU	MMARY D	ATA (BANKFULL)		в
A(BKF)	41.8	W(FPA)	42+	*[
W(BKF)	21.08	WP	23.23	
Max d	3.2	Hydraulic Radius	1.80	
Mean d	2.0	Wetted Perimeter= WP		
W/D	10.6	Area= A		
Bank Height	3.27	7 Width= W		
Entrenchment	2.0+	+ Depth= D		
Stream Type	С	Bankfull=	BKF	
ea from Rural Reg	ional Curv	/e	37.6	

Bankfull datum* = 604.70 Datum reset during Monitoring Year 3.

Field Crew:	IPJ and KC
Stream Reach:	2
Project:	Wells Creek
Drainage Area:	2.23
Date:	Jun-08
Monitoring Year:	4

Field Crew:	IPJ and KC
Stream Reach:	2
Project:	Wells Creek
Drainage Area:	2.23
Date:	Jun-08
Monitoring Year:	4

STATION	н	NOTES
(Feet)	(Feet)	
0.00	602.72	
0.05	602.45	
5.42	602.51	
10.13	601.09	BKF
13.87	600.98	
17.10	599.25	
18.66	599.31	
20.07	598.81	
21.05	597.80	
21.76	597.67	LEW
24.04	597.57	
24.26	597.84	
25.54	597.47	
25.81	597.81	
26.37	597.78	
27.08	597.24	Thalweg
27.86	597.24	
27.93	597.69	REW
28.96	599.05	
33.31	601.27	тов
38.30	601.53	
41.52	602.23	
45.16	602.43	
45.13	603.02	

		E	Bankfull	
	Mr. dela	Hydrau	Decimetry	A
	wiath	Depth	Perimeter	Area
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.00	0.0
	0.0	0.0	0.05	0.0
	3.7	0.1	3.74	0.2
	3.2	1.8	3.66	3.2
	1.6	1.8	1.57	2.8
	1.4	2.3	1.49	2.9
	1.0	3.3	1.41	2.8
	0.7	3.4	0.72	2.4
	2.3	3.5	2.28	7.9
	0.2	3.3	0.34	0.7
	1.3	3.6	1.33	4.4
	0.3	3.3	0.43	0.9
	0.6	3.3	0.56	1.9
	0.7	3.9	0.89	2.5
	0.8	3.9	0.78	3.0
	0.1	3.4	0.46	0.3
	1.0	2.0	1.70	2.8
	4.0		4.51	4.1
TOTALS	22.9		25.94	42.9

SUN	IMARY D	ATA (BANKFULL)	
A(BKF)	42.9	W(FPA)	45+
W(BKF)	22.9	WP	25.94
Max d	3.9	Hydraulic Radius	1.65
Mean d	1.9	Wetted Perimeter=	WP
W/D	12.2	Area=	A
Bank Height	4.03	Width=	W
Entrenchment	2.0+	Depth=	D
Stream Type	С	Bankfull=	BKF
rea from Rural Regio	onal Curve	9	37.6

Bankfull datum* = 601.10 *Datum reset during Monitoring Year 3.

Field Crew:	IPJ and KC
Stream Reach:	2
Project:	Wells Creek
Drainage Area:	2.23
Date:	Jun-08
Monitoring Year:	4

STATION (Feet)	ELEVATION (Feet)	NOTES
0.00	601.36	
0.11	601.14	
5.12	601.16	
9.81	599.98	
16.67	600.14	
18.78	600.03	
24.11	599.47	
26.07	598.19	
26.96	596.83	LEW
27.28	594.85	
28.41	594.38	Thalweg
30.28	594.14	
33.67	595.95	
35.40	596.65	
35.49	596.66	REW
36.23	598.13	
37.68	598.75	
38.68	598.84	
40.58	599.18	
43.82	599.47	
48.21	600.13	TOB
59.22	600.44	
70.38	600.47	
71.33	600.74	
73.38	601.79	
81.23	601.93	
81.25	601.92	

		Bank	full/Top of Banl	k
		Hydr	aulic Geometry	
	Width	Depth	Perimeter	Area
	(Feet)	(Feet)	(Feet)	(Sq. Ft.)
	0.0	0.0	0.00	0.0
	3.2	0.3	3.23	0.6
	2.0	1.6	2.35	1.9
	0.9	3.0	1.62	2.0
	0.3	5.0	2.01	1.3
	1.1	5.4	1.22	5.9
	1.9	5.7	1.88	10.4
	3.4	3.9	3.85	16.2
	1.7	3.2	1.87	6.1
	0.1	3.2	0.09	0.3
	0.7	1.7	1.65	1.8
	1.5	1.1	1.58	2.0
	1.0	1.0	1.00	1.0
	1.9	0.6	1.94	1.5
	3.2	0.3	3.25	1.6
	2.2		2.21	0.4
TALS	25.1		29.73	53.0
	SUMMAR	Y DATA		Bankfull datum* =
	A(BKF)	53.0		*Datum reset during
	W(BKF)	25.1		

APPENDIX B5

STREAM LONGITUDINAL PROFILE

Longitudinal Profile Overlay (Years 3-4) Wells Creek - Reach 1 ∞ Elevation (feet) 645 Channel Distance (feet) --- Thalweg Year 1 (7-28-2005) ---- Thalweg Year 2 (5-18-2006) ▲ Left Bankfull Year 4 • Right Bankfull Year 4 • Left Top of Bank Year 4

O Crossvane

• Right Top of Bank Year 4

J-hook

Rootwad

Longitudinal Profile Overlay (Years 3-4) Wells Creek - Reach 2 Elevation (feet) **Channel Distance (feet)** Thalweg Year 1 (7-28-2005)
Thalweg Year 4 (6-19-2008)
Right Bankfull Year 4 Thalweg Year 2 (5-22-2006)
 Water Surface Year 4 Left Bankfull Year 4 Right Top of Bank Year 4
Rootwad • Left Top of Bank Year 4 • Crossvane • J-hook

Appendix B5

Wells Creek - Reach UT

Appendix B5

APPENDIX B6

STREAM PEBBLE COUNTS

PEBBLE	COUNT			\square		-		
Site: Wells	Creek			S	E			
Party: IPJ 8	k PDB			ENGIN	EERING	GROUP		
Date: 10/9/2	2008			PARTICLE COUNT				
				CS 1		••••		
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C	17	17	33%	33%	
	Very Fine	.062125	\square	2	2	4%	37%	
	Fine	.12525	S S	11	11	21%	58%	
	Medium	.2550		7	7	13%	71%	
	Coarse	.50-1.0		1	1	2%	73%	
.0408	Very Coarse	1.0-2			0	0%	73%	
.0816	Very Fine	2.0-4.0	\square	1	1	2%	75%	
.1622	Fine	4-5.7			0	0%	75%	
.2231	Fine	5.7-8		2	2	4%	79%	
.3144	Medium	8-11.3		1	1	2%	81%	
.4463	Medium	11.3-16		1	1	2%	83%	
.6389	Coarse	16-22.6		3	3	6%	90%	
.89-1.26	Coarse	22.6-32		4	4	8%	98%	
1.26-1.77	Very Coarse	32-45			0	0%	98%	
1.77-2.5	Very Coarse	45-64	\bigcirc	1	1	2%	100%	
2.5-3.5	Small	64-90			0	0%	100%	
3.5-5.0	Small	90-128			0	0%	100%	
5.0-7.1	Large	128-180	\Box		0	0%	100%	
7.1-10.1	Large	180-256			0	0%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024			0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS	51	100%	100%	

PEBBLE				00	-	-		
Site: Wells	Creek			SS	EI			
Party: PDB	& KD			ENGIN	EERING	GROUP		
Date: 11/6/2	Date: 11/6/2008			PA		OUNT		
Inches	Particle	Millimotors		CS 2	TOT#		% CLIM	
inches	Silt/Clay	< 0.062	SIC 17 17 34%					
	Very Fine	062-125			0	0%	34%	
	Fine	125-25	s \		0	0%	34%	
	Medium	25-50			0	0%	34%	
	Coarse	.50-1.0			0	0%	34%	
.0408	Very Coarse	1.0-2			0	0%	34%	
.0816	Very Fine	2.0-4.0	\frown		0	0%	34%	
.1622	Fine	4-5.7			0	0%	34%	
.2231	Fine	5.7-8			0	0%	34%	
.3144	Medium	8-11.3		5	5	10%	44%	
.4463	Medium	11.3-16		2	2	4%	48%	
.6389	Coarse	16-22.6		10	10	20%	68%	
.89-1.26	Coarse	22.6-32		5	5	10%	78%	
1.26-1.77	Very Coarse	32-45		2	2	4%	82%	
1.77-2.5	Very Coarse	45-64		3	3	6%	88%	
2.5-3.5	Small	64-90			0	0%	88%	
3.5-5.0	Small	90-128		2	2	4%	92%	
5.0-7.1	Large	128-180		3	3	6%	98%	
7.1-10.1	Large	180-256		1	1	2%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024	L BOULDER /		0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS	50	100%	100%	

PEBBLE	COUNT			\square				
Site: Wells	Creek			S	E			
Party: PDB	& KD			ENGIN	EERING	GROUP		
Date: 11/6/2	2008			PARTICLE COUNT				
				CS 3		••••		
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C	27	27	49%	49%	
	Very Fine	.062125			0	0%	49%	
	Fine	.12525	S S	1	1	2%	51%	
	Medium	.2550		4	4	7%	58%	
	Coarse	.50-1.0		5	5	9%	67%	
.0408	Very Coarse	1.0-2		8	8	15%	82%	
.0816	Very Fine	2.0-4.0	\frown		0	0%	82%	
.1622	Fine	4-5.7			0	0%	82%	
.2231	Fine	5.7-8			0	0%	82%	
.3144	Medium	8-11.3		5	5	9%	91%	
.4463	Medium	11.3-16			0	0%	91%	
.6389	Coarse	16-22.6		3	3	5%	96%	
.89-1.26	Coarse	22.6-32		1	1	2%	98%	
1.26-1.77	Very Coarse	32-45		1	1	2%	100%	
1.77-2.5	Very Coarse	45-64			0	0%	100%	
2.5-3.5	Small	64-90			0	0%	100%	
3.5-5.0	Small	90-128			0	0%	100%	
5.0-7.1	Large	128-180	\Box		0	0%	100%	
7.1-10.1	Large	180-256			0	0%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024	BOOLDER /		0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS	55	100%	100%	

PEBBLE	COUNT			00	-	-		
Site: Wells	Creek			SS	EI			
Party: PDB	& KD			ENGIN	EERING	GROUP		
Date: 11/6/2	2008			PARTICLE COUNT				
				CS 4				
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C	10	10	20%	20%	
	Very Fine	.062125			0	0%	20%	
	Fine	.12525	S S	5	5	10%	30%	
	Medium	.2550		1	1	2%	32%	
	Coarse	.50-1.0		4	4	8%	40%	
.0408	Very Coarse	1.0-2		2	2	4%	44%	
.0816	Very Fine	2.0-4.0	\frown		0	0%	44%	
.1622	Fine	4-5.7			0	0%	44%	
.2231	Fine	5.7-8			0	0%	44%	
.3144	Medium	8-11.3		6	6	12%	56%	
.4463	Medium	11.3-16		1	1	2%	58%	
.6389	Coarse	16-22.6		1	1	2%	60%	
.89-1.26	Coarse	22.6-32		2	2	4%	64%	
1.26-1.77	Very Coarse	32-45		2	2	4%	68%	
1.77-2.5	Very Coarse	45-64		8	8	16%	84%	
2.5-3.5	Small	64-90		1	1	2%	86%	
3.5-5.0	Small	90-128		4	4	8%	94%	
5.0-7.1	Large	128-180			0	0%	94%	
7.1-10.1	Large	180-256			0	0%	94%	
10.1-14.3	Small	256-362			0	0%	94%	
14.3-20	Small	362-512			0	0%	94%	
20-40	Medium	512-1024			0	0%	94%	
40-80	Large	1024-2048			0	0%	94%	
	Bedrock		BDRK	3	3	6%	100%	
				TOTALS	50	100%	100%	

PEBBLE				\square			
Site: Wells	Creek			SS	EI		
Party: IPJ 8	A PDB			ENGIN	EERING	GROUP	
Date: 10/9/2	2008			РА		OUNT	
				CS 5			
Inches	Particle	Millimeters	TOT# ITEN				
	Silt/Clay	< 0.062	S/C	1	1	2%	2%
	Very Fine	.062125			1	2%	3%
	Fine	.12525	S S	1	2	3%	7%
	Medium	.2550		0	0	0%	7%
	Coarse	.50-1.0		0	0	0%	7%
.0408	Very Coarse	1.0-2		9	9	15%	22%
.0816	Very Fine	2.0-4.0	\square	2	2	3%	25%
.1622	Fine	4-5.7		2	2	3%	29%
.2231	Fine	5.7-8		6	6	10%	39%
.3144	Medium	8-11.3		7	7	12%	51%
.4463	Medium	11.3-16		2	2	3%	54%
.6389	Coarse	16-22.6		11	11	19%	73%
.89-1.26	Coarse	22.6-32		7	7	12%	85%
1.26-1.77	Very Coarse	32-45		1	1	2%	86%
1.77-2.5	Very Coarse	45-64		1	1	2%	88%
2.5-3.5	Small	64-90		1	1	2%	90%
3.5-5.0	Small	90-128		4	4	7%	97%
5.0-7.1	Large	128-180	\Box	2	2	3%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024	BOOLDER /		0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	59	100%	100%

PEBBLE	COUNT			\square				
Site: Wells	Creek			SS	EI			
Party: IPJ 8	k PDB			ENGIN	EERING	GROUP		
Date: 10/9/2	2008							
Date: 10/3/2				CS 6				
Inches	Particle	Millimeters		000	TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C	2	2	3%	3%	
	Very Fine	.062125	\square		2	3%	7%	
	Fine	.12525	S S		2	3%	10%	
	Medium	.2550			0	0%	10%	
	Coarse	.50-1.0		2	2	3%	13%	
.0408	Very Coarse	1.0-2		2	2	3%	16%	
.0816	Very Fine	2.0-4.0	\frown	2	2	3%	20%	
.1622	Fine	4-5.7			0	0%	20%	
.2231	Fine	5.7-8		6	6	10%	30%	
.3144	Medium	8-11.3		6	6	10%	39%	
.4463	Medium	11.3-16		4	4	7%	46%	
.6389	Coarse	16-22.6		14	14	23%	69%	
.89-1.26	Coarse	22.6-32		5	5	8%	77%	
1.26-1.77	Very Coarse	32-45		5	5	8%	85%	
1.77-2.5	Very Coarse	45-64		5	5	8%	93%	
2.5-3.5	Small	64-90		0	0	0%	93%	
3.5-5.0	Small	90-128		2	2	3%	97%	
5.0-7.1	Large	128-180		1	1	2%	98%	
7.1-10.1	Large	180-256		1	1	2%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024			0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS	61	100%	100%	

PEBBLE				00	-	-	
Site: Wells	Creek			SS	EI		
Party: IPJ 8	k PDB			ENGIN	EERING	GROUP	
Date: 10/9/2	Date: 10/9/2008			PA		OUNT	
				CS 7			
Inches	Particle	Millimeters		ITEM %	% CUM		
	Silt/Clay	< 0.062	S/C	21	21	33%	33%
	Very Fine	.062125			0	0%	33%
	Fine	.12525	S S		0	0%	33%
	Medium	.2550		0	0	0%	33%
	Coarse	.50-1.0		0	0	0%	33%
.0408	Very Coarse	1.0-2		13	13	20%	53%
.0816	Very Fine	2.0-4.0	\square	1	1	2%	55%
.1622	Fine	4-5.7		0	0	0%	55%
.2231	Fine	5.7-8			0	0%	55%
.3144	Medium	8-11.3		6	6	9%	64%
.4463	Medium	11.3-16		3	3	5%	69%
.6389	Coarse	16-22.6		4	4	6%	75%
.89-1.26	Coarse	22.6-32		3	3	5%	80%
1.26-1.77	Very Coarse	32-45		1	1	2%	81%
1.77-2.5	Very Coarse	45-64		7	7	11%	92%
2.5-3.5	Small	64-90		0	0	0%	92%
3.5-5.0	Small	90-128		0	0	0%	92%
5.0-7.1	Large	128-180	\Box		0	0%	92%
7.1-10.1	Large	180-256			0	0%	92%
10.1-14.3	Small	256-362			0	0%	92%
14.3-20	Small	362-512			0	0%	92%
20-40	Medium	512-1024	BOOLDER /		0	0%	92%
40-80	Large	1024-2048			0	0%	92%
	Bedrock		BDRK	5	5	8%	100%
				TOTALS	64	100%	100%

PEBBLE	COUNT			\square				
Site: Wells	Creek			SS	EI			
Party: IPJ 8	k PDB			ENGIN	EERING	GROUP		
Date: 10/9/2	2008			PARTICI E COUNT				
				CS 8				
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C	40	40	78%	78%	
	Very Fine	.062125		0	0	0%	78%	
	Fine	.12525	S S	0	0	0%	78%	
	Medium	.2550		0	0	0%	78%	
	Coarse	.50-1.0		0	0	0%	78%	
.0408	Very Coarse	1.0-2		1	1	2%	80%	
.0816	Very Fine	2.0-4.0	\square	0	0	0%	80%	
.1622	Fine	4-5.7		0	0	0%	80%	
.2231	Fine	5.7-8		0	0	0%	80%	
.3144	Medium	8-11.3		0	0	0%	80%	
.4463	Medium	11.3-16		4	4	8%	88%	
.6389	Coarse	16-22.6		2	2	4%	92%	
.89-1.26	Coarse	22.6-32		2	2	4%	96%	
1.26-1.77	Very Coarse	32-45		1	1	2%	98%	
1.77-2.5	Very Coarse	45-64	\bigcirc	1	1	2%	100%	
2.5-3.5	Small	64-90		0	0	0%	100%	
3.5-5.0	Small	90-128		0	0	0%	100%	
5.0-7.1	Large	128-180	\Box	0	0	0%	100%	
7.1-10.1	Large	180-256		0	0	0%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024			0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS	51	100%	100%	

PEBBLE				00				
Site: Wells	Creek			SS	EI			
Party: IPJ 8	& PDB			ENGIN	EERING	GROUP		
Date: 10/0/2	2008							
	2000			CS 9				
Inches	Particle	Millimeters		000	TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C		0	0%	0%	
	Very Fine	.062125			0	0%	0%	
	Fine	.12525	S S		0	0%	0%	
	Medium	.2550			0	0%	0%	
	Coarse	.50-1.0		0	0	0%	0%	
.0408	Very Coarse	1.0-2		2	2	4%	4%	
.0816	Very Fine	2.0-4.0	\frown	0	0	0%	4%	
.1622	Fine	4-5.7		4	4	7%	11%	
.2231	Fine	5.7-8		8	8	14%	25%	
.3144	Medium	8-11.3		5	5	9%	33%	
.4463	Medium	11.3-16		7	7	12%	46%	
.6389	Coarse	16-22.6		11	11	19%	65%	
.89-1.26	Coarse	22.6-32		6	6	11%	75%	
1.26-1.77	Very Coarse	32-45		6	6	11%	86%	
1.77-2.5	Very Coarse	45-64		6	6	11%	96%	
2.5-3.5	Small	64-90		2	2	4%	100%	
3.5-5.0	Small	90-128		0	0	0%	100%	
5.0-7.1	Large	128-180	\Box	0	0	0%	100%	
7.1-10.1	Large	180-256		0	0	0%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024	ROOLDER /		0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS	57	100%	100%	

PEBBLE	COUNT			00				
Site: Wells	Creek				L'I			
				20				
				FINGIN	IFERING	GROUP	65	
Party: IPJ 8	R PDB							
Date: 10/9/2	Date: 10/9/2008			PA		OUNT		
				CS 10				
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM	
	Silt/Clay	< 0.062	S/C	5	5	9%	9%	
	Very Fine	.062125		0	0	0%	9%	
	Fine	.12525	S S	2	2	4%	13%	
	Medium	.2550		3	3	5%	18%	
	Coarse	.50-1.0		2	2	4%	22%	
.0408	Very Coarse	1.0-2		4	4	7%	29%	
.0816	Very Fine	2.0-4.0	\frown	5	5	9%	38%	
.1622	Fine	4-5.7		1	1	2%	40%	
.2231	Fine	5.7-8		10	10	18%	58%	
.3144	Medium	8-11.3		9	9	16%	75%	
.4463	Medium	11.3-16		6	6	11%	85%	
.6389	Coarse	16-22.6		4	4	7%	93%	
.89-1.26	Coarse	22.6-32		1	1	2%	95%	
1.26-1.77	Very Coarse	32-45		0	0	0%	95%	
1.77-2.5	Very Coarse	45-64		0	0	0%	95%	
2.5-3.5	Small	64-90		0	0	0%	95%	
3.5-5.0	Small	90-128		3	3	5%	100%	
5.0-7.1	Large	128-180		0	0	0%	100%	
7.1-10.1	Large	180-256			0	0%	100%	
10.1-14.3	Small	256-362			0	0%	100%	
14.3-20	Small	362-512			0	0%	100%	
20-40	Medium	512-1024			0	0%	100%	
40-80	Large	1024-2048			0	0%	100%	
	Bedrock		BDRK		0	0%	100%	
				TOTALS>	55	100%	100%	

PEBBLE				00			5
Site: Wells	Creek			SS	EI	<u>_</u>	
Party: IPJ 8	R PDB			ENGIN	IEERING	GROUP	
Date: 10/9/2	Date: 10/9/2008			PA	RTICLE C		
				CS 11		-	-
Inches	Particle	Millimeters			TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	0	0	0%	0%
	Very Fine	.062125		0	0	0%	0%
	Fine	.12525	S S	0	0	0%	0%
	Medium	.2550		0	0	0%	0%
	Coarse	.50-1.0	D /	4	4	8%	8%
.0408	Very Coarse	1.0-2		4	4	8%	16%
.0816	Very Fine	2.0-4.0	\square	1	1	2%	18%
.1622	Fine	4-5.7		2	2	4%	22%
.2231	Fine	5.7-8		0	0	0%	22%
.3144	Medium	8-11.3		3	3	6%	28%
.4463	Medium	11.3-16		6	6	12%	40%
.6389	Coarse	16-22.6		8	8	16%	56%
.89-1.26	Coarse	22.6-32		14	14	28%	84%
1.26-1.77	Very Coarse	32-45		4	4	8%	92%
1.77-2.5	Very Coarse	45-64	\bigcirc	3	3	6%	98%
2.5-3.5	Small	64-90		0	0	0%	98%
3.5-5.0	Small	90-128		1	1	2%	100%
5.0-7.1	Large	128-180	\Box	0	0	0%	100%
7.1-10.1	Large	180-256		0	0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	50	100%	100%

PEBBLE				00			
Site: Wells	Creek			SS	EI	21	
Party: IPJ 8	k PDB			ENGIN	IEERING	GROUP	
Date: 10/9/2	Date: 10/9/2008			PA		OUNT	
Inches Particle Millimeters				CS 12	TOT#	ITEM %	% CUM
	Silt/Clay	< 0.062	S/C	1	1	2%	2%
	Very Fine	.062125	\frown	0	0	0%	2%
	Fine	.12525	s s	0	0	0%	2%
	Medium	.2550	A	0	0	0%	2%
	Coarse	.50-1.0		8	8	14%	16%
.0408	Very Coarse	1.0-2		19	19	33%	48%
.0816	Very Fine	2.0-4.0	\frown	0	0	0%	48%
.1622	Fine	4-5.7		2	2	3%	52%
.2231	Fine	5.7-8		2	2	3%	55%
.3144	Medium	8-11.3		2	2	3%	59%
.4463	Medium	11.3-16		5	5	9%	67%
.6389	Coarse	16-22.6		6	6	10%	78%
.89-1.26	Coarse	22.6-32		5	5	9%	86%
1.26-1.77	Very Coarse	32-45		2	2	3%	90%
1.77-2.5	Very Coarse	45-64		4	4	7%	97%
2.5-3.5	Small	64-90		0	0	0%	97%
3.5-5.0	Small	90-128		2	2	3%	100%
5.0-7.1	Large	128-180			0	0%	100%
7.1-10.1	Large	180-256			0	0%	100%
10.1-14.3	Small	256-362			0	0%	100%
14.3-20	Small	362-512			0	0%	100%
20-40	Medium	512-1024			0	0%	100%
40-80	Large	1024-2048			0	0%	100%
	Bedrock		BDRK		0	0%	100%
				TOTALS	58	100%	100%

APPENDIX C

PLAN VIEW SHEETS

VEGETATION PLOT STAKING NORTHING EASTING VP 1 790341.4193 1868127.8295 VP 2 789960.9694 1868135.0301	Tom Jospo Manager La taska cood La taska cood La taska cood La taska cood La taska cood	CROSS SECTR
VP 3 789665.0116 1868150.2452 CROSS SECTION STAKING NORTHING EASTING ELEVATION XSC 1 LEFT 790305.5148 1868218.0170 647.6658 XSC 1 RIGHT 790314.0373 1868113.8230 649.1659 XSC 2 LEFT 790110.5344 1868176.2530 647.0516 XSC 2 RIGHT 790182.8344 1868135.0260 647.4296 XSC 3 LEFT 789852.9624 1868136.6510 645.8511 XSC 3 RIGHT 789927.1424 1868097.5820 645.5129 XSC 4 LEFT 789672.2703 1868164.3220 645.0177		10507 109653; 2899 2643.031628
XSC 4 RIGHT 789640.7034 1868076.9910 643.5958	LEGEND WELLS CREEK - REACH 1	
STREAM FEATURES THALWEG 2008 BANKFULL 2008 	PROJECT ELEMENTS STRUCTURE TYPES CONTROL POINT/BENCHMARK (TBM) CROSS-SECTIONS CROSS-SECTIONS	

VEGETATION PLOT WITH PHOTO CORNER (ARROW)

- EASEMENT BOUNDARY

• PHOTO POINT

ROCK CROSS VANE

-

ROOTWAD

J-HOOK VANE

02222g

ROCK VANE

LOCATION: MON M	WEL NITOR: ONITO	LS CREEK ING PLAN VIEW PRING YEAR 4
PROJ #: 41-	4	COUNTY: ALAMANCE
PREPARED BY:	IPJ	
CHECKED BY:	PDB	DATE: 2/4/09

VEGET	ATION PLOT S	TAKING
N. TON	NORTHING	EASTING
VP 4	786838.9045	1866257.9760
VP 5	786634.8714	1866265.6880

CROSS SECTION STAKING			
	NORTHING	EASTING	ELEVATION
SC 5 LEFT	786862.4549	1866351.6519	609.7649
SC 5 RIGHT	786893.9555	1866271.9524	608.4476
SC 6 LEFT	786700.8207	1866288.0700	609.6833
SC 6 RIGHT	786715.8993	1866199.4730	606.5492
SC 7 LEFT	786596.8813	1866250.9420	609.3301
SC 7 RIGHT	786586.2595	1866172.4990	605.5594
SC 8 LEFT	786403.0018	1866163.2910	604,9927
SC 8 RIGHT	786394.8939	1866106.6040	604.3983

LOCATION;	WEL	LS CREEK	
	MONITOR	NG PLAN VIEW	
	MONITO	RING YEAR 4	
PROJ #:		COUNTY:	
	414	ALAMANCE	
PREPARED E	^{IY:} IPJ		
CHECKED B	Y: PDB	DATE: 2/4/09	

STR	WELLS EAM MONIT	S CREEK 'ORING - YEAR 4	
PROJ #:	414	COUNTY: ALAMANCE	
PREPARED BY	': IPJ		
CHECKED BY	: PDB	DATE: 2/10/08	

	PROJECT REFERENCE NO.	SHEET NO.
	414	2
	PROJECT ENGIN	EER
ENGINEERING GROUP		
1025 WADE AVENUE		
RALEIGH, NC 27605 TEL: 919-789-9977 FAX: 789-9591		
10 0 20		
SCALE		
JUAL		

CREST GAUGE -

WELLS CREEK - REACH 1

LOCATION:		
	WE	LLS CREEK
STREAM	I MON	IITORING - YEAR 4
PROJ #:	ι	
		, (2) 40 4002
PREPARED BY:	TD.I	
	110	
CHECKED BY:		DATE:
	PDB	2/10/08

UT TO WELLS CREEK

STREA	WELL M MONI	-S CREEK TORING - YEAR 4
PROJ #: 4	14	COUNTY: ALAMANCE
PREPARED BY:	IPJ	
CHECKED BY:	PDB	DATE: 2/10/08

	LOCATION:		
	WELLS CREEK		
	STREAM	MONITORI	NG - YEAR 4
	PROJ #: 414	c	
n	PREPARED BY:	IPJ	
CIII	CHECKED BY:	PDB	DATE: 2/10/08

		TO	PROJECT REFERENCE	E NO.	SHEET NO.
			414		5
			PRC	DJECT ENGINE	ER
		RING GROUP			
	RALEIGH, NC 27605	i			
	TEL: 919-789-9977	FAX: 789-9591			
		~~			
		20			
	SCAL	E			
	L				
	0	、 、			
	5				
	ATT	~			
			/0		
			13		
~					
	_	/	13		
			لي ل		
	\prec		13		
	X COSCO		- H		
	8 - <i>8</i>	_ /			
		1			
	e e e e e e e e e e e e e e e e e e e		\		
			1		
4					
7.9520					
20.2590					
.2470					
		אז י		ч п п	0
๛๛๛	UKEE		KĽA(2
		LOCATION:			
~			WELLS CR	EEK	
		VEGETAT	TON AGGEGO		
		VEGETAT	TOM 499599		ICAR 4
		PBQJ #*			
		4	14	ALA	MANCE
OCUCT	em	MONITOPER OV		•	
USYSU		WUNITORED BY;	IPJ		

4	14	ALAMANCE
MONITORED BY:	IPJ	
CHECKED BY:	PDB	DATE: 2/10/08

LOCATION:

뷜

MATCH

WELLS CREEK VEGETATION ASSESSMENT - YEAR 4			
PROJ #:		COUNTY:	
4	14	ALAMANCE	
MONITORED BY:	IPJ		
CHECKED BY:	PDB	DATE: 2/10/08	

VEGETATION ASSESSMENT - YEAR 4		
PROJ #:	14	COUNTY: ALAMANCE
MONITORED BY:	IPJ	
CHECKED BY:	PDB	DATE: 2/10/08